
Monitoring vegetation phenology is crucial for 
understanding how vegetation dynamics influence a changing 
climate (Garonna et al., 2016). As climate change increasingly 
influences the agricultural production, evaluating the phenology 
of cultivated lands becomes even more significant. Phenological 
data are critical for tracking plant development, monitoring 
agricultural processes, estimating crop yields (Mateo-Sanchis et 
al., 2021; Prasad et al., 2021), and ensuring food security of the 
growing global population (Yu et al., 2017), estimating net primary 
productivity and evaluating the carbon budget of the particular 
crop (Patel et al., 2023).  Additionally, understanding the temporal 
and spatial variability of phenological changes helps distinguish 
different vegetation types (Xue et al., 2014; Wang et al., 2013), 
particularly crops (Wardlow et al., 2008).

Traditionally, plant phenology assessment was carried out 
through ground-level observations, which involve visual monitoring 
of the phenological events—a process that is both labor-intensive 
and time-consuming (Misra et al., 2020). Consequently, space-

borne observations have become invaluable for monitoring the 
spatio-temporal development of plants at a regional scale, typically 
known as ‘land surface phenology’ (LSP) (Zeng et al., 2020). LSP 
is the variation in the seasonal patterns of the vegetated surfaces 
as observed through remote sensing data (Reed et al., 2009). 
LSP metrics typically capture the vegetation changes that can be 
interpreted from the remote sensing imagery. Some of the LSP/
phenology metrics are start of season (SOS), length of growing 
season, peak of growing season (POS), end of season (EOS) (De 
Beurs and Henebry 2004), and other transitional stages like maturity 
and senescence (Zhang et al., 2003). These metrics are usually 
computed using the normalized difference vegetation index (NDVI) 
or other common vegetation indices (De Beurs and Henebry 2004; 
Singh et al., 2022) and are expressed as the day of the year. In India, 
satellite data has proven capable of delineating phenology metrics 
for various crops like cotton, sugarcane, and rice (Prasad et al., 2021; 
Singh et al., 2022), which are primarily cultivated in the plains.

With the advent of “big data” concept, the integration 
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Monitoring vegetation phenology is essential for understanding the impacts of climate change on agricultural production. This study leverages 
Sentinel-2 data to develop an algorithm in Google Earth Engine (GEE) for calculating phenological metrics of rice crop cultivated over the hilly 
area, allowing for high-resolution, efficient, and large-scale analysis without the need for data download. The study focuses on key metrics, 
including the start of the season and end of the season, length of growing season derived from various vegetation indices. The results demonstrate 
that NDVI-based phenological metrics closely align with the observed values at the experimental site, Malan. Moreover, the relationship of 
NDVI based length of growing season with the rice crop yield was found stronger with a R2 value of 0.68, depicting the capability of the satellite-
based phenology metrics to estimate the rice crop yield in hilly region of Himachal Pradesh. 
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of multi-source and multi-scale remote sensing data, along with 
the development of robust, efficient, and accurate data processing 
and comprehensive simulation algorithms, has become a major 
challenge in remote sensing applications. In this context, Google 
Earth Engine (GEE) has emerged as a powerful high-computing 
platform, making it well-suited for addressing the complexities of 
remote sensing based big data processing (Lonare et al., 2022; Soni 
et al., 2023; Choudhury and Bhattachrya, 2023). These positions 
GEE as one of the most promising tools for future applications.

Hilly areas are sensitive indicators of climate change, 
making it crucial to monitor them for developing effective adaptation 
and mitigation policies (Orusa et al., 2023). Therefore, it is essential 
to focus scientific research and climate adaptation strategies on hilly 
regions to ensure stability in context of the future climate projections 
(Samuele et al., 2021; Orusa et al., 2023). Among the many impacts 
of climate change on plants, the most discernible effects are the 
shortening of the growth period and delay or advancements of 
major phenological events in the crop growth cycle. As a result, 
studying crop phenology is becoming increasingly important. 
To date, as per our knowledge, there have been no phenological 
studies conducted on crops in hilly regions of India. Consequently, 
the objective of the study is to estimate phenology metrics from 
rice crop cultivated in a hilly region using fine-resolution satellite 
imagery. Terrace farming is commonly practiced in these areas, 
where the small field sizes necessitate the use of fine-resolution 
imagery for accurate metric extraction. Additionally, evaluating the 
performance of multiple vegetation indices for phenological studies 
typically requires downloading large-area image datasets, which 
can be time-consuming. In this context, the Google Earth Engine 
(GEE) platform was employed to obtain the phenology metrics for 
rice crops using different vegetation indices. Furthermore, this study 
investigates the relationship between crop yield at various locations 
in the study area and the corresponding phenology metrics. 

MATERIALS AND METHODS

Study area

 The area selected for estimating phenology metrics 
comprises three sub-districts of Kangra district in Himachal 
Pradesh, where hill agriculture or terrace farming is practiced. 
This region spans over latitudes 31.88° to 32.39°N and longitudes 
76.03° to 76.64°E, covering 2091 square kilometers. The altitude 
of the study area varies from 350 meters to 1500 meters. The 
annual rainfall varies from 1500 mm to 1800 mm. The immediate 
neighboring districts are Mandi to the east, Chamba to the north, 
Hamirpur and Una to the south, and Pathankot in Punjab to the 
west. Maize and rice are the major crops produced in this region 
and forms the backbone of its economy. Other crops grown include 
wheat, mustard, potatoes, tomatoes, peas, and various others.

Satellite data 

 Sentinel-2 satellite data has been utilized in this study 
to calculate the phenological metrics. These metrics were derived 
using the vegetation indices (VIs) like NDVI, Enhanced Vegetation 
Index (EVI), Normalized Differential Phenology Index (NDPI). 
The Sentinel-2 dataset was employed for these calculations. 
The preparation of satellite data and phenology modeling were 
conducted in the Google Earth Engine (GEE) platform. The formula 

used to calculate various indices is as follows:

where,  ρnir, ρred, ρblue, ρswir are the NIR (Band 8), RED (Band 4), 
BLUE (Band 2) and SWIR (Band 11) bands from Sentinel 2. The 
value of α was set to 0.51, as it was considered as the most effective 
value for suppressing the variability of the soil backgrounds (Dong 
et al., 2020). 

Field data

An experimental site is located at the Malan Rice and 
Wheat Research Centre in Palampur, Kangra, Himachal Pradesh 
(32.1148° N, 76.4162° E), representing a rice-wheat cropping 
system.  The start and end of the growing season were also recorded 
at the experimental site. In October 2022, a field campaign was 
conducted in the Kangra district to measure crop yield. A total of 
21 locations were selected across the study area for this purpose. 
Plant samples were collected from a 1-meter square area and then 
sun-dried. The grains were separated from the samples and weighed 
using a weighing balance. The weights obtained, initially in grams 
per meter square were subsequently converted to tonnes per hectare 
(t ha-1) to determine the final crop yield. Additionally, wherever 
possible, the information about date of transplanting (DOT) and 
date of harvesting (DOH) were collected from farmers as secondary 
data. The coordinates of the fields where these dates were recorded 
during the field campaign are as follows :1) 32.08°N, 76.47°E; 2) 
32.12°N, 76.41°E; 3) 32.18°N, 76.31°E; 4) 32.15°N, 76.45°E; 5) 
32.16°N, 76.31°E; 6) 32.19°N, 76.19°E; 7) 32.00°N, 76.46°E. The 
DOT and DOH noted, will hereafter be referred to as observed SOS 
and observed EOS, respectively. 

Methodology

In this study, a vegetation indices-based threshold method 
was utilized (Bolton et al., 2020; Bornez et al., 2020). This method 
identifies SOS and EOS as the first and last days, respectively, when 
a specified threshold value is surpassed. Consequently, LOS is 
computed as the number of days between SOS and EOS. The value 
of the threshold, τ, can be kept constant or set dynamically for each 
pixel (Borgogno-Mondino et al., 2022). For this study, the dynamic 
threshold value for each pixel was calculated using the approach 
adopted from Orusa et al., (2023):

τ = φ* (minVi- maxVi ) + minVi

where τ is the dynamic threshold value which depends on the 
annual amplitude of the time series; minVi and maxVi represents the 
minimum and maximum values of the vegetation index during the 
crop growing season, respectively. The value φ was adopted as 0.5, 
representing the mid green-up and mid green-down during the crop 
growth cycle (Bolton et al., 2020)

To minimize noise, the time-series data was filtered and 
smoothed before extracting the phenological metrics, following 
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the approach of Borgogno-Mondino et al., (2022). Time-series of 
the VIs were first filtered and smoothed for the experimental site. 
A moving average window of 10 days was applied 20 days to 
avoid excessive smoothing, which could result in an unrealistic 
representation of the time series data. If a pixel had no data available 
within 20-day window, then the window size was extended to 40 
days. Following this, cubic spline interpolation was employed to 
convert the 20-day time series into a daily time series. 

Statistical analysis

The accuracy of the estimated metrics from various 
vegetation indices compared to observed metrics at the experimental 
site was evaluated by calculating the difference between them. The 
smallest difference between observed and estimated metrics (from 
three vegetation indices tested) was identified as most suitable for 
modeling phenology metrics of rice crop in the study area. The 
coefficient of variation (CV) in percentage is calculated as:

The relationship between LOS and crop yield was 
evaluated using linear regression analysis. The coefficient of 
determination (R2) was computed to assess the strength of the 
relationship between these two variables. Additionally, R2 indicates 
the proportion of variation in the dependent variable (rice yield) that 
can be explained by the independent variable (LOS). 

RESULTS AND DISCUSSION

Temporal profile of vegetation indices during crop growth cycle

An algorithm was utilized in Google Earth Engine 
(GEE) to calculate the phenological metrics of the rice crop, 
enabling dataset processing without the need for downloading, and 
maintaining a spatial resolution of 10 meters for Sentinel-2. Fig. 1 
shows the temporal profile of vegetation indices for the experimental 
site where phenology was observed in Kharif 2022. The figure also 
depicts the status of the SOS and EOS for the respective vegetation 
indices in the study area for Kharif 2022.

The SOS determined using NDVI occurred earlier 
compared to the other vegetation indices considered in the study. 
Specifically, the SOS was modelled on DOY 209 (July 28, 2022), 
DOY 211 (July 30, 2022) and, DOY 215 (August 03, 2022), when 
using NDVI, NDPI and EVI, respectively for RS based phenology 
modelling. At the experimental site, the transplanting data (observed 
SOS) and harvesting date (observed EOS) for rice during the Kharif 
2022 was recorded on DOY 192 (July 11, 2022) and DOY 285 
(October 12, 2022), respectively. The difference between observed 
and modelled SOS was 15 days, 17 days and 21 days for NDVI, 
NDPI and EVI, respectively, indicating that NDVI was more accurate 
in capturing the SOS of the rice crop at the experimental site. The 
EOS was modelled using NDVI and NDPI as DOY 280 (October 
7, 2022), while EVI indicated the EOS as DOY 276 (October 3, 
2022). The difference between the observed and modelled EOS was 
5 days for NDVI, NDPI, and 9 days for EVI. This suggests that 
using EVI resulted in a delayed SOS and an advanced EOS, leading 
to a shorter growing season for the rice crop. Consequently, the LOS 
was shortest when using EVI and longest when using NDVI. The 
difference in observed and modelled SOS is higher in comparison to 
the observed and modelled EOS, which also reported by Prasad et 
al., (2021) in cotton crop. 

Land surface phenology metrics

The methodology used to extract phenology metrics in 
GEE effectively captured the crop growth cycle. Fig. 2 illustrates 
the SOS and EOS for the Kharif 2022. While phenological metrics 
can be computed for any pixel, but they are meaningful on vegetated 
surfaces where the phenological events takes place. Consequently, 
this figure displays the phenological metrics for the rice crop only. 
The SOS and EOS estimated using the NDVI index were found to 
be in close alignment with the observed values at the experimental 
site, compared to other indices used in the study. Therefore, Fig. 2 
presents the SOS and EOS maps derived from NDVI time series 
data. The spatial maps indicate that more than 70% of the area for 
SOS occurs between DOY 194 and DOY 211, and over 80% of the 
area for EOS falls between DOY 274 and DOY 280. Approximately, 
22% of the area shows SOS between DOY 166 and DOY 194, 
predominantly in the central-eastern portion of the map. 

Fig. 1: Temporal profile of NDVI (orange colored diamond), NDPI (brown colored star), and EVI (green colored triangle). The solid line depicts 
the interpolated time series of the vegetation indices. The green and red circles over the interpolated lines represent the start of the season 
and the end of the season, respectively, as determined by different vegetation indices.
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During the field campaign, secondary information 
regarding the observed SOS and observed EOS was collected from 
the farmers. Table 1 provides details of the observed SOS and 
observed EOS, expressed as day of the year, from eight different 
locations. The table also includes the SOS and EOS modelled from 
the satellite data for the corresponding field locations. 

The observed SOS vary across the sites from DOY 173 to 
DOY 193, while the observed EOS ranges from DOY 270 to DOY 
285. The comparison between observed and modelled data reveals 
how accurately the model captures SOS and EOS. The modelled 
SOS ranges from DOY 175 to DOY 212, while the modelled EOS 
varies from DOY 264 to DOY 280. The observed SOS has a CV of 
2.90%, whereas the modelled SOS shows a higher CV of 5.60%, 
indicating more variability in the SOS predictions by the phenology 
model used in this study. The dataset highlights the discrepancies 
between the observed and modelled metrics. The mean differences 
between observed and modelled SOS and EOS suggest that, 
although the model is generally effective, it may require adjustments 

to improve its accuracy, particularly for SOS (Prasad et al., 2021; 
Singh et al., 2022).

While the study provides valuable insights in rice 
crop phenology, there are some limitations. The present study 
successfully captures the SOS, EOS, and LOS of the rice growing 
season, but is not able to account the other stages of rice crop. Further 
modifications to the GEE code could be made to capture additional 
stages of rice growth, such as tillering, heading, and maturity. 
Additionally, the use of Sentinel-2 data in this study has limitations 
related to time series development, including noise and data gaps 
(e.g., reduced reflectance due to cloud cover). Finding noise-free 
values was particularly challenging given the short growing cycle of 
the rice crop (Soriana-Gonzalez et al., 2022). To address this issue, 
the combined use of Sentinel-2 and Sentinel-1 data could enhance 
the prediction of phenological metrics (Mercier et al., 2020). 
Lastly, this study focuses on a single cropping system and may not 
be applicable to double cropping systems, which are commonly 
practiced in India. Future studies can also use daily data on both 

Table 1: Details of the observed and modelled phenology metrics from different locations in Kangra region

Site Latitude Longitude Observed
SOS

Observed
EOS

Modelled
SOS

Modelled
EOS

1. 32.11°N 76.42°E 192 285 209 280
2. 32.08°N 76.47°E 180 285 175 264
3. 32.12°N 76.41°E 180 282 205 280
4. 32.18°N 76.31°E 176 270 211 280
5. 32.15°N 76.45°E 173 276 198 279
6. 32.16°N 76.31°E 182 280 201 280
7. 32.19°N 76.19°E 176 283 212 280
8. 32.00°N 76.46°E 180 270 209 275

Mean ± SD 180 ± 5.3 278 ± 5.8 203 ± 11.5 277 ± 5.3
CV (%) 2.90 2.08 5.60 1.91

Rice crop phenology and crop yield using satellite imagery and Google Earth Engine

Fig. 2: Start of season (a) and end of season (c) for three sub-districts of the Kangra district in Himachal Pradesh. Panels (b) and (d) provide a 
zoomed-in view of the area, representing SOS and EOS, respectively. Observed yields at different geographic coordinates are depicted 
on the maps with pinkcolored circles, where the circle size corresponds to the yield values.
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rainfall and temperature. Additionally, correlating phenology with 
Growing Degree Days can explain the variability more prominently. 
The growing degree day is determined by summing the daily 
temperatures that exceed a set base temperature throughout the year. 
The base temperature is different for different crops. This approach 
can capture both temporal and spatial variations in the phenology 
and delineates the thermal conditions necessary for the crop growth 
(Wang et al., 2022). Therefore, exploring the spatial variability of 
phenological metrics in relation to growing degree days could be a 
promising direction for future research. 

Length of growing season and crop yield

The measured crop yield in the Kangra district varies from 
1.38 t ha-1 to 4.41 t ha-1, with the mean of 2.63 t ha-1. The relationship 
between the LOS and the observed yield was also examined. A 
comparative assessment was done in between phenology metrics 
estimated from NDPI and NDVI with extracted values from the 
geographical coordinates of crop cutting sites. A linear and positive 
trend was observed between the LOS and rice crop yield (Fig. 3). 
The relationship was found to be stronger when using NDVI-based 
phenology metrics compared to NDPI-based phenology metrics, 
with R² values of 0.68 and 0.56, respectively. This suggests that LOS 
estimated using NDVI time series is more effective in explaining the 
variability in rice crop yield in the hilly region of Kangra district. 
The shortening of LOS can lead to shortened vegetative growth 
period along with decrease in the number of spikelet and grains. It 
can also impact the decline in the effective accumulated temperature 
at filling stage, which can lead to lower grain filling thus lowering 
crop yield (Zhang et al., 2023). Moreover, phenological metrics 
could also be taken as the dominating influencing factor for crop 
yield, that can control the carbon allocation between plant organs.  
Hence, the accurate estimation of the phenological metrics could 
lead to accurate rice yield estimation at field-scale in the hilly terrain. 
Guo et al., (2020) delineated the dominating influence of phenology 
metrics on the rice yield. The study also revealed the higher relative 
importance of phenology than climate on the rice yields.

CONCLUSIONS

This study successfully leveraged Sentinel-2 data to 
model SOS and EOS of rice crop using the Google Earth Engine 
(GEE) platform. The algorithm enabled efficient processing of high-
resolution spatial data without the need for downloading, facilitating 
accurate monitoring of the crop growth cycle throughout the season. 
Our findings highlight that NDVI-based metrics closely matched 
observed values, proving the utility of remote sensing in capturing 
key phenological events like SOS and EOS. The relationship between 
LOS and field-based crop yield was found strong, underscoring the 
applicability of phenological metrics in estimating crop yield at the 
field scale. Future research should explore the integration of daily 
rainfall and temperature data, as well as utilizing growing degree 
days (GDD), to further enhance the understanding of phenological 
variability and improve crop monitoring and yield predictions. 
Additionally, the potential of combining optical and microwave data 
could be explored for monitoring phenological stages of the crops, 
particularly during the monsoon season.  
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