
 Rainfall is a climatic factor that exhibits significant 
variations across different locations and times, making it challenging 
to predict, but it has a vital role in tropical regions such as Indonesia 
(Swarinoto et al., 2012). The fundamental role of rainfall cannot be 
understated, as it significantly impacts a wide range of domains, 
including agriculture, forestry, plantations, irrigation, marine 
activities, infrastructure, and beyond. Information related to rainfall 
can be obtained through the Global Circulation Model (GCM), 
which results from numerical simulation forecasts. These GCMs 
were designed by various world climate institutions, which have 
variations in spatial resolution and the equations used to produce 
atmospheric parameters. Despite the usefulness of GCM output 
data, it presents challenges when linking it with local-scale rainfall 
data due to its global scope and large dimensions. Therefore, specific 
techniques are required to facilitate this process. According to Dar 
et al. (2018), Statistical Downscaling (SD) is capable of predicting 
local phenomenon like rainfall using output data from GCM. The 

SD technique will create a function that transfers information from 
the GCM output to local variables.

 According to Dar et al. (2018), the use of GCM data for 
climate projections is still hampered because there is bias in the 
observation data, necessitating bias correction. Biases stem from 
imperfect model conceptualization, short data records, low-quality 
reference datasets, and poor spatial resolution. Various methods like 
Empirical Quantile Mapping (EQM) have been developed to address 
this, which Gudmundsson et al. (2012) note for their effectiveness 
in correcting rainfall prediction biases without assuming data 
distribution types. Bias correction in GCM output can be done 
using Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS) data, as has been done by Nur et al. (2021) on rainfall 
in Sumatra. CHIRPS data is grid-based rainfall data combining rain 
station and satellite data with high spatial resolution. 
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Rainfall is a climate element with high variations in space and time scales, so it is not easy to predict. One way to predict rainfall is statistical 
downscaling (SD). SD can predict local rainfall based on Global Circulation Model (GCM) data. The Decadal Climate Prediction Project 
(DCPP), one of the GCMs, originates from adjacent grids and experiences multicollinearity problems. Rainfall as a response variable is Tweedie 
Compound Poisson Gamma (TCPG) distribution data because it has a discrete component (rainfall events) and a continuous component (rainfall 
intensity), so SD modelling will be carried out using Tweedie-LASSO. This research aims to compare the performance of bias correction 
and ensemble methods in SD in predicting rainfall in West Java, Indonesia. Bias correction uses Empirical Quantile Mapping (EQM) with 
CHIRPS data, and the ensemble method uses a stacking technique with Random Forest (Stacking-RF) due to the varied characteristics of DCPP 
model sources. Evaluation results using Root Mean Square Error Prediction (RMSEP) and correlation coefficient show that bias correction 
improves single-model performance but not ensemble models. Besides that, ensemble models outperform single models both before and after 
bias correction. The combination of bias correction and ensemble modelling can be recommended when conducting SD to enhance the prediction 
capability of rainfall at stations and other areas.
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 Rainfall in SD can be categorized into discrete (no rain) 
and continuous (variable rain intensity) distributions. Dzupire et 
al. (2018) explain these categories, while Dunn (2004) introduces 
a joint distribution method between the two using the Tweedie 
family distribution, known as Tweedie Compound Poisson-Gamma 
(TCPG). Most SD research usually focuses on one distribution 
category. Rakhmalia et al. (2020) and Hayati et al. (2021) used the 
Tweedie regression model to predict rainfall in West Java. Hayati 
et al. (2021) also integrate LASSO to address multicollinearity in 
GCM output. However, these studies did not apply bias correction 
to the GCM data and relied on a single GCM model. Sa’adi et al. 
(2020) used Random Forest (RF) to improve predictions in Borneo 
using four GCM outputs, demonstrating the superiority of ensemble 
models over single GCM outputs. Stacking as an ensemble method 
has also been used by several researchers (Gu et al., 2022; Lu et 
al., 2023) in predicting climate elements. It shows better prediction 
robustness than a single model.

 To enhance rainfall prediction accuracy in SD using four 
CMIP6 GCM outputs, we propose the use of the Tweedie-LASSO 
model with initial bias correction using CHIRPS data at six rainfall 
stations in West Java, Indonesia. Tweedie-LASSO is used as a model 
because Tweedie regression can simultaneously model discrete 
and continuous components of rainfall to improve future rainfall 
predictions. LASSO regularization is added to the model to handle 
violations of the multicollinearity assumption between explanatory 
variables in GCM data, which can cause the regression coefficient 
estimates to become unstable (Hayati et al., 2021). The Decadal 
Climate Prediction Project (DCPP) GCM was selected due to its 
focus on precise climate forecasts for the next decade. West Java, a 
flood and extreme weather-prone area (BNPB 2024) was chosen for 
this study. Predictions from each GCM will undergo an ensemble 
stacking process with RF as the meta-model. RF was selected 
as the meta-model due to its superior performance in a study by 
Fernandez-Delgado et al. (2014). It evaluated 179 classifiers across 
17 families on 121 datasets from multiple disciplines and found RF 
the best model. We will compare the bias-corrected ensemble model 
against those without correction and individual GCM outputs. We 
will evaluate the best model based on its proximity to actual rainfall 
data, using RMSEP and correlation coefficient metrics.

MATERIALS AND METHODS

Study location

 The location of this research is West Java, a province 
in Indonesia. West Java is geographically located between 5º50’-
7º50’ S and 104º48’-108º48’ E, with a land area of   35377.76 km2, a 
coastline of 724.85 km and a sea area of   155128.90 Ha. West Java 
features varied topography, including coas t al and lo w land areas 
in the north, highlands in the centre, and mountains  in the south, 
leading to diverse climate conditions. Spe c ifically,  temperatures 
range from 16-34°C, and annual rainfall varies between 1,000-4,000 
mm, with significant differences between the dry and rainy seasons. 
The study utilizes data from 6 rainfall stations across West Java to 
represent its topographic diversity: Krangkeng and Cibukamanah 
(lowlands), Kawali and Katulampa (midlands), and Cibeureum and 
Gunung Mas (highlands), as detailed in Table 1 and Fig. 1.

         Table 1: Description of rainfall stations 

Station
Statistical characteristics of rainfall (mm/

month)
Mean Sd Min Max

Cibukamanah 221.9 181.15 0 836.0
Krangkeng 110.3 104.06 0 639.0
Kawali 253.5 208.01 0 966.0
Katulampa 339.6 179.76 0 914.0
Cibeureum 175.6 219.19 0 706.2
Gunung Mas 303.0 134.23 0 1091.5

Sd: Standard Deviation; Min: Minimum value; Max: Maximum 
Value

Fig. 1: Map of West Java and location of rainfall stations

Data

 This research uses three types of secondary data from 
January 1991 to December 2020. The first is GCM CMIP6 monthly 
rainfall data, an explanatory variable in a 5×8 grid. The type of 
GCM used is DCPP, obtained from the page https://esgf-node.
ipsl.upmc.fr/search/cmip6-ipsl/. The four DCPP models used are 
CNRM-ESM2, IPSL-CM6A-LR, MIROC6 and MPI-ESM1-2-LR. 
The second is CHIRPS monthly rainfall data obtained from the 
page https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/. 
CHIRPS locations correspond to six rain stations with a grid size of 
20 x 20 and a resolution of 0.05°x 0.05° each. This data will be used 
to correct bias in the GCM output data. The last is monthly rainfall 
intensity data from the Centre for Research and Development of the 
Agency for Meteorology Climatology and Geophysics (BMKG). 
The location of the rain stations is in West Java Province, with six 
stations, as in Table 1 and Fig. 1.

Analysis procedure

 The data analysis procedures carried out in this research 
are as follows: (1) Conducting data exploration to determine the 
characteristics of rainfall data; (2) Splitting the data into training 
sets (1991–2017) and test sets (2018-2020); (3) Performing DCPP 
data bias correction on CHIRPS data using EQM; (4) Checking 
the distribution of rainfall data and estimating  index parameters; 
(5) Doing SD rainfall modelling using two scenarios (uncorrected 
DCPP and corrected DCPP as the explanatory variable). Modelling 
was carried out using Tweedie-LASSO regression; (6) Combining 
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rainfall predictions from each scenario using Stacking with Random 
Forest as a meta-model (k-fold = 3); (7) Evaluating the model by 
calculating RMSEP and correlation coefficient between actual 
data and predicted data; (8) Comparing RMSEP and correlation 
coefficient before and after bias correction as well as single models 
and ensemble models using the Paired t-test or Wilcoxon Paired 
test. If the p-value obtained is less than 5%, then at α=5%, it can 
be concluded that (a) bias correction successfully improves model 
performance and (b) the ensemble model successfully improves the 
performance of the single model.

Empirical quantile mapping (EQM)

 EQM is a non-parametric technique for bias correction 
that aligns quantiles between predicted and observed data’s CDF 
(Cumulative Distribution Function) without assuming any specific 
data distribution. Bias correction via EQM involves (1) Calculating 
empirical percentiles for both predicted and observed data; (2) Obtain 
the cumulative distribution function for each predicted and observed 
data from empirical percentiles. The values that fall between the 
given percentiles are computed through linear interpolation; (3) 
Perform bias correction with the following equation (Gudmundsson 
et al. 2012):

     
  (1)

where Pm is prediction data, Fm is CDF of Pm, Fo-1  CDF inverse of 
Po ,  is observation data and  is corrected prediction data.

Tweedie-LASSO regression model

 The Tweedie distribution belongs to the exponential 
distribution family. It is included in the Generalized Linear Model 
(GLM), which uses a link function to relate the expected value to 
the linear model’s systematic components (McCullagh and Nelder, 
1989). For Tweedie regression, the link function is specified in 
equation (2) by Bonat and Kokonendji (2017).

   (2)

 where  xi and β are vectors of size k×1, which are 
explanatory variables and unknown regression coefficients.

 LASSO reduces the regression coefficient of highly 
correlated explanatory variables to almost zero or exactly zero so 
that it can overcome multicollinearity. The coefficient estimation 
using the Tweedie-LASSO method can be obtained from the 
following equation (Qian et al. 2016):

  (3)

 where  is the likelihood function of the observed 
data, n is the number of observations, λ is the tuning parameter 
(shrinkage parameter that controls the LASSO coefficient) with  
λ ≥ 0, βj is the regression coefficient parameter and 

 is the negative function of the log-likelihood of 
the Tweedie distribution. Estimating the parameters   cannot 
be done deductively using calculus but instead uses an optimization 
method called the IRLS-BMD algorithm, which is an algorithm 

that incorporates the blockwise majorization descent method into 
iteratively re-weighted least squares for parameter estimation (Qian 
et al. 2016).

Ensemble method

 The ensemble method combines multiple models to 
decrease prediction errors. It involves two steps: first, generating 
ensemble members, in this case, using Tweedie-LASSO modelling 
with four DCPP models; second, merging their predictions using 
Stacking-Random Forest. Stacking employs various base models 
for parallel learning and then integrates their outcomes via a meta-
model algorithm (Lu et al., 2023). Random forest, an extension of 
the CART algorithm, aggregates numerous trees for classification 
and regression, enhancing predictive accuracy (Breiman, 2001).

RESULTS AND DISCUSSION

Exploration of rainfall data and bias correction process

 Data exploration was carried out on rainfall at the six 
selected stations mentioned in Table 1. In Fig. 2a, rainfall at all 
stations has a similar pattern, which resembles the letter U with 
a peak of the rainy season from the end to the beginning of the 
year. This pattern is by the BMKG (2021), which states that West 
Java is a province with a monsoon rainfall pattern. This pattern is 
unimodal, featuring a single peak season. Rainfall is lowest during 
June-September and highest in November-February. Altitude 
influences rainfall intensity. Lowland stations like Cibukamanah 
and Krangkeng experience less rainfall than midland and highland 
areas, with Gunung Mas Station in the highland area recording the 
highest rainfall. The histogram and density plot of rainfall at the 
six locations from 1991 to 2020 are shown in Fig. 2b. All rainfall 
at the six stations has a density plot that skews to the right and is 
positive. Almost all stations have a value of 0 that is greater than 
other observations except Katulampa Station.

 The  p index parameter value and 95% confidence interval 
estimated using maximum likelihood profile in Table 2 are also in 
the interval 1 < p < 2. It can be confirmed that rainfall at all stations 
has a Tweedie distribution. The  p index parameters in Table 2 will 
be used in the next part of SD modelling.

 DCPP data bias correction will be done using CHIRPS 
data consisting of 400 grids. One DCPP data model consisting of 
40 grids will be corrected repeatedly by 400 CHIRPS data grids 
according to the location of rainfall stations. The correction results 
by 400 grids are then averaged to obtain 40 corrected DCPP data 
grids. The correction factors obtained from the training data will be 
applied to the test data. The corrected training and test data will be 
used as explanatory variables to predict rainfall at each station.

Comparison of Tweedie-LASSO performance between terrain 
types 

 Table 3 shows that Tweedie-LASSO has different 
predictive abilities when viewed based on terrain type. The midlands 
have the highest average RMSEP value compared to other terrain 
types because they have diverse rainfall characteristics, as was 
found when estimating the  index on the Tweedie distribution. The 
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difference in the predictive ability of the model based on the terrain 
types is also supported by the results of statistical testing using the 
Kruskal Wallis test, with a p-value of 1.61 ×10-14, which means 
that there is a difference in the average RMSEP value between the 
terrain at a significance level of α=0.05 . If we look at the correlation 
value, the three types of terrain have similar values, supported by a 
p-value of more than 0.05. This statistic means that the Tweedie-
LASSO model has the same ability to predict rainfall patterns in all 
terrain types.

Comparison of model performance before and after bias 
correction

 Overall, bias correction of DCPP data with CHIRPS data 
using EQM has various effects on the DCPP model and rainfall 
station locations. Fig. 3 is a boxplot of the RMSEP values   and 
correlations measured on test data. Each point connected by a line 
is a pair of observations. The red line means that the bias correction 
decreases the RMSEP, and the blue line means that the bias 
correction increases correlation between predictions and actual data. 
The average decrease in RMSEP value and increase in correlation 
value after bias correction, along with the p-value of statistical 
testing, can also be seen in Fig. 3.

 Based on Fig. 3a and 3b, it can be seen that the red 
and blue lines dominate the plot. This plot means bias correction 
reduces RMSEP and increases single-model correlation before bias 
correction. Statistical tests also support this statement, so it can 

be concluded that bias correction has significantly improved the 
performance of the single model both overall and based on terrain 
type. On ensemble models, bias correction has different effects. 
If seen based on the red and blue lines in Fig. 3c and 3d, only a 
few pairs of observations experience a decrease in RMSEP and an 
increase in correlation. The statistical test results also showed that 
bias correction does not improve the performance of the ensemble 
model, either overall or based on terrain type.

Comparison of the performance of a single model and an ensemble 
model

 The boxplot in Fig. 4 shows that the ensemble model has 
a smaller RMSEP than the single model RMSEP and is dominated 
by the red line. The correlation boxplot also clearly shows that the 
ensemble model has a greater correlation with a more homogeneous 
distribution than the single model correlation and is dominated 
by the blue line. Statistical tests also support this statement, so it 
can be concluded that the ensemble model has better performance 
compared to the single model both overall and based on the bias 
correction method.

 Ensemble models with DCPP models originating 
from various sources have been proven to have better abilities in 
predicting rainfall compared to using just one DCPP model. Using 
the ensemble model also reduced each model’s bias so that there 
was no need to go through the bias correction stage first if using 
the ensemble model. Bias correction is required if only one DCPP 

Table 2: Parameter index p for all stations

Station p 95% CI

Cibukamanaha 1.47 (1.33; 1.49)

Krangkenga 1.45 (1.41; 1.55)

Kawalib 1.57 (1.52; 1.63)

Katulampab 1.39 (1.30; 1.50)

Cibeureumc 1.53 (1.45; 1.61)

Gunung Masc 1.57 (1.56; 1.65)
a)  Lowland; b) Midland; c) Highland: CI: Confidence Interval

Table 3: RMSEP and  r by terrain type

Terrain Type RMSEP
(Mean ± Sd)

r
(Mean  ± Sd)

Lowland 90.02 ± 34.71 0.69  ± 0.17

Midland 161.30 ± 18.43 0.67 ± 0.14

Highland 119.30 ± 39.23 0.65 ± 0.14

p-value* 1.61 ± 10-14 0.2385

*testing using Kruskal Wallis statistics; Sd: Standard Deviation

Fig 2: (a) Boxplot, (b) Histogram and Density Plot of Rainfall at Six Stations
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model is used as an explanatory variable to predict rainfall.

Plot predicted data versus actual data 

 Comparison plots of actual data and predictions from 
each DCPP model after bias correction and Stacking-RF before bias 
correction for the period January 2018 to December 2020 can be 
seen in Fig. 5a. All predicted values   have a pattern that tends to be the 
same as actual data but less able to follow actual data with extreme 

values. Overall, the prediction value of the Stacking-RF model is 
better able to predict rainfall data with lower extreme values   when 
compared to a single model. This can be seen from the red points, 
which are closer to the black points at some of the lower extreme 
values   than the other coloured points, which represent a single model.  
The RMSE P and coefficient correlation   of Stacking-RF without 
bias correction, which is the best model in this study, can be seen in  
Fig. 5b.

Fig. 3: Boxplot of (a) RMSEP of single model; (b) correlation of single model; (c) RMSEP of ensemble model; (d) correlation of ensemble 
model before and after bias correction (Δ∶ The differences between RMSEP or correlation after and before bias correction)

Fig. 4: Boxplot of (a) RMSEP; (b) correlation of single model and ensemble model (Δ: The differences between RMSEP or correlation ensemble 
model and single model)

Bias correction and statistical downscaling model for rainfall prediction
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Best model performance

 The RMSEP of the Stacking-RF model before bias 
correction, which is the best model, can be seen in Fig. 6. Model 
evaluation was carried out on monthly data from 2018 to 2020 
to see the model’s predictive capabilities on a monthly, seasonal, 
and annual basis. Indonesia, which is a tropical country, consists 
of two seasons, namely the dry season (May-October) and the wet 
season (November-April) (Mulsandi et al., 2024). The RMSEP of 
the model in Fig. 6a has a similar pattern to the rainfall boxplot 
in Fig. 2b. Months with high rainfall tend to have higher RMSEP, 
and vice versa. This finding is also supported by Fig. 6b, which 
shows that the dry season has a lower RMSEP than the wet season. 
On an annual basis, the model has a reasonably stable RMSEP for 
prediction periods of 1 to 3 years.

CONCLUSION

 This research focuses on studying bias correction and 
ensemble methods in statistical downscaling to improve the ability 
to predict future rainfall. Based on the research that has been carried 

out, we obtained information that the bias correction can improve 
the performance of the Tweedie-LASSO single model but not the 
Stacking-RF ensemble. Ensemble models incorporating DCPP 
models from diverse sources unequivocally outperform single 
DCPP model predictions regarding rainfall accuracy. Leveraging 
an ensemble model reduces the bias inherent in individual models, 
rendering the bias correction step unnecessary. This finding contrasts 
sharply with the mandatory bias correction when relying solely on 
a single DCPP model for rainfall prediction. This combination of 
bias correction and ensemble models is highly recommended for 
conducting statistical downscaling (SD), as it significantly enhances 
the accuracy of rainfall predictions at stations and other areas.
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