
 Food security is threatened by the sensitivity of crops to 
changes in temperature, precipitation, and carbon dioxide levels. 
Research suggests that climate change is a major driver of crop 
yield variability, accounting for 30-50% of global fluctuations 
(Rezaei et al., 2018). To mitigate these climate risks and ensure 
food security, accurate predictions of future climate impacts on 
agricultural production are essential. Wheat production in India 
reached an impressive 112.18 million tonnes during the 2022-23 
crop year (FAO, 2024). Wheat faces significant challenges due to 
rising temperatures and elevated CO2 levels and a potential wheat 
yield decline up to 25% by 2080 has been projected in India (Kumar 
et al., 2014). Lobell et al., (2012) focused on the Indo-Gangetic 
Plain (IGP), highlighting the localized reductions in yield up to 20% 
in certain areas. Pandey (2023) reported a decline in the yield of 
different crops including wheat under projected climate change, the 
extent of which were found to vary with the locations and crops in 
different districts of Gujarat, India. Therefore, safeguarding wheat 
production in India becomes critical. 

 Remote sensing plays a crucial role in estimating biomass 
and crop yields, monitoring plant health and drought stress, tracking 
crop development stages, and mapping land cover changes. The 
vegetative indices, when compared with factors like leaf area index 
(LAI) or photosynthetically active radiation (fAPAR), provide 
reliable estimates that closely match actual harvest data. It’s 
important to remember that local calibration is essential for ensuring 
data accuracy (Myneni et al., 2002). Crop growth models estimate 
factors like biomass and grain yield, but extensive training data 
and calibration for specific scenarios is require (Kasampalis et al., 
2018). While offering reasonable accuracy, limitations exist. These 
include long runtimes, data storage constraints, and the inability to 
fully capture local variations in soil, weather, and crop parameters 
(Shahhosseini et al., 2019). So, by integrating with remote sensing 

data, crop models can be enhanced for regional applications. In view 
of this the current study was planned to yield estimation using crop 
simulation model and relate with normalized difference vegetation 
index (NDVI) and land surface temperature (LST) to optimizing 
resource use, and to develop effective climate-resilient strategies. 

 The daily weather data for 2000-2022, consisting of 
maximum temperature (0C), minimum temperature (0C), rainfall 
(mm) and sunshine duration (hr) were sourced from the nearest 
Agrometeorological Observatory situated at the PAU Regional 
Research Station, Bathinda (30.58°N, 74.18°E). Essential soil 
characteristics parameters, such as sand, silt, clay composition, 
bulk density, pH level, permanent wilting point, saturation water 
content, initial water content, field capacity collected from previous 
study by Pal and Yadav (2018) were used for creating the soil file in 
DSSAT. The wheat yield data for Bathinda district from 2000-2022 
was sourced from the Statistical Abstract of Punjab (Directorate of 
Statistics, Government of Punjab).

 The daily product of MODIS land surface temperature 
(LST) of 1 km spatial resolution was downloaded from the site 
https://search.earthdata.nasa.gov/ for the period 2000-2022. The 
scaling factor used to extract LST was 0.02. For calculation of 
NDVI, MODIS daily surface reflectance data (1 km product) was 
downloaded and NDVI was computed from Band 1 (Red) and Band 
2 (NIR) using following formula:

NDVI =
(NIR-R)
(NIR+R)

 CERES-wheat model was run using the long-term 
weather and soil data collected, along with genetic coefficients for 
the wheat variety HD 3086, previously fine-tuned by Singh et al., 
(2022). The CERES-wheat model was executed for each growing 
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season from 2000 to 2022 for wheat sown on 10th November, using 
the collected soil and weather data. The model outputs, including 
simulated wheat yields, were then compared to the actual yield data 
obtained from the statistical abstracts. Several statistical methods 
such as root mean square error (RMSE), the index of agreement (d), 
and the coefficient of determination (R²) were employed to check 
model performance.

Simulated v/s reported wheat yield

 The wheat yield was simulated for HD 3086 variety 
of wheat for the period of 2000 to 2022 and was related with the 
reported yield of Bathinda district. between simulated and observed 
wheat yields variety spanning the. The outcomes of the simulation 
were examined using scatter plots, where the simulated yields were 
plotted against the actual recorded yields. The results highlight 
a reasonable degree of correspondence between the simulated 
and observed yields with R2 value 0.75 (Fig. 1). The Root Mean 
Square Error (RMSE) values (313.5 kg ha-1) quantify the average 
magnitude of the differences between observed and simulated yields. 
The relatively low RMSE values is further validating the model’s 
capability to mimic real-world outcomes. The d-Stat values (0.88) 
signify the efficiency of the simulation model in terms of yield 
prediction. Higher d-Stat values denote a better match between 
simulated and observed yields. Studies by Pal et al., (2015) reported 
good agreement between model outputs and observed data for 
phenological events, biomass accumulation, and grain yields. 
Similarly, Kumar et al., (2024) observed close agreement between 
simulations and field data for phenology, grain yield, and biomass 
yield. 

NDVI v/s reported yield

 Fig. 2 illustrates the relationship between NDVI and 
reported yield of wheat on Bathinda district. Analysis revealed a 
good correlation (R2 = 0.693) between recorded wheat yield and 
NDVI values in the Bathinda region of Punjab for the period 
2000-2022. The slope in regression equation revealed a positive 
relationship between yield and NDVI (Fig. 2). This relationship 
reflects the seasonal variations in crop growth, wherein increases 
in NDVI values correspond with enhanced vegetation vigor during 
the wheat growing season, typically leading to higher wheat yields. 
Conversely, declines in NDVI may indicate stress or adverse 
conditions that could impact yield outcomes. However, it’s important 
to recognize that various environmental factors, such as water 
availability, temperature fluctuations, soil quality, and agricultural 
practices, pest outbreaks, can interact with NDVI to influence crop 
productivity. Despite these complexities, the observed correlation 
highlights the practical utility of NDVI as a valuable tool for 
agricultural management and decision-making. Previous studies 
support the positive correlation between NDVI and crop yield. 
Panek and Gozdowski (2020) reported strong correlations (0.50-
0.80) between cereal yield and NDVI in Central Europe using 
MODIS satellite data. Similarly, Kumar et al., (2022) also showed 
significant relation (R2=0.87) between NDVI and observed yield.

LST v/s reported yield

 The correlation analysis conducted between recorded 

wheat yield and LST (Land Surface Temperature) values for the 
Bathinda region of Punjab over a span of 23 years, from 2000 to 
2022. With a coefficient of determination (R2) of 0.606, it indicates 
a good relationship between wheat yield and LST values (Fig. 
3). This suggests that variations in LST, which reflect surface 
temperature conditions, have a notable influence on crop yield 
fluctuations in the region. The slope in regression equation revealed 
a negative relationship between yield and LST. Specifically, higher 
LST values may signify increased temperature stress on crops, 
potentially leading to reduced yields, while lower LST values may 
indicate more favorable temperature conditions conducive to higher 
yields. A negative correlation suggests that monitoring LST could 
be a helpful tool in Bathinda to identify areas potentially at risk 
due to heat stress. However, it’s essential to consider the factors 
like rainfall, soil moisture, and agricultural practices can also 
significantly impact wheat yield.

 Thus, the results revealed that the validated CERES-
wheat model exhibited good agreement with observed yield data. 
The NDVI was positively correlated with the reported wheat yield 
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Fig. 1: Simulated and reported yield of wheat in Bathinda district 

Fig. 2: Relationship between recorded wheat yields with NDVI

Fig. 3: Relationship between recorded wheat yields with LST
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highlighting the potential of NDVI as a tool for monitoring crop 
health and productivity. Similarly, LST was negatively correlated 
with the yield which suggests that monitoring LST could be 
beneficial in identifying areas potentially at risk from heat stress. 
Overall, this study demonstrates the effectiveness of the CERES-
wheat model for simulating wheat yields in the Bathinda region. 
The relations developed between yield and NDVI, as well as yield 
and LST suggest the potential for using these tools for agricultural 
management and decision-making. 
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