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Reference evapotranspiration (ET
o
) is the basis for

estimating crop evapotranspiration and computing crop
water requirements. ET

o
 is a complex and non-linear

phenomenon depending on several interacting
meteorological variable, such as temperature, humidity,
radiation and wind speed (Singh et al., 2016). Artificial
Neural Networks (ANNs) are effective tools to model
nonlinear system and have been increasingly employed in
modelling of hydrological processes because of their ability
in mapping the input-output relationship without any
understanding of physical process. Kumar et al., (2002)
investigated the utility of ANNs for the estimation of ET

o
 and

found that the ANNs can predict ET
o
 better than the

conventional method. Recently, the multi-layer perceptron
(MLP) neural network ssuccessfully applied in ET

o
estimation.

Kisi (2007) investigated the accuracy of the MLP with
Levenberg-Marquardt training algorithm and reported that
MLP can be successfully employed in modeling ET

o
from

available climate data. MLP models were compared with
some empirical models and found to have better accuracy in
estimating ET

o
. Considering potential applicability of ANN

in ET
o
 modeling, it was planned to apply neural network

approach for estimation of ET
o
under limited and full data

condition for Padegaon, Satara region, Maharashtra, India.

Padegaon station lies with latitude of 16°42’18"N,
longitude of 74°14’36"E and 567 m above mean sea level.
The climate data for Padegaon station was collected from
IMD, Pune and SAU, Rahuri, Maharashtra, India The data
sample is composed of 1300 weekly (1990-2014) records of
maximum temperature (Tmax), minimum temperature (Tmin),
maximum relative humidity (RHmax), minimum relative
humidity (RHmin), bright sun shine hours (BSS), wind speed
(WS) and pan evaporation (Epan). First 1040 data sets (80%
of the whole data) were used to train the MLP models,
remaining 260 data sets (20% of the whole data)data were
used for validation of models.

Model architecture

In this study feed forward back propagation type of
network with single hidden layer was selected for

development of architecture. The various selected variables
were discussed and presented in Table 1. In this study
Levenberg-Marquardt algorithms with ‘trainlm’ training
function was chosen for ET

o
 modelling application with

Learngdm (gradient descent with momentum weight and
Bias learning function) adaption learning function for this
application. The most widely used non-linear activation
function i.e., a log sigmoid for the hidden layer and linear
transfer function in output layer were selected.The number
of nodes in the input layer depends on the number of
meteorological parameters used in estimating ET

o
. The

different combinations of input variables were selected for
limited data condition, while all six parameters required for
estimation of ET

o
 in Penman Monteith was used for full data

condition (Bhatt et al., 2007) (Table 1). The number of
nodes in hidden layer was varied alternatively from 3 to 19.
The number of nodes in the output layer depends on the
number of target variables, so the output layer will be single
node corresponding to ET

o
 estimated using sole standard

Penman-Monteith method (Allen, et al.,1998). ET
o
 estimation

performance of developed networks were compared
statistically with estimated values of ET

o
 by Penman-

Monteith method to select best network architecture. The
best fit architecture was identified with statistical criteria
viz.,coefficient of correlation (R), index of agreement d(IA),
root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE) and coefficient
efficiency (CE) (Singh et al., 2018). The best fit network
architecture was simulated with unseen data and evaluates
the performance with same statistical measures for validation
of the model.

Identification of models

The best fit ANN models were identified by influence
of number of hidden neurons on statistical performance
measures for all models for Padegaon station under limited
and full data condition.For identification of ANN1 (as input:
Epan) model (Table 2), network architecture 1-7-1 trained
with trainlm training function has the best values of all six
performance criteria as R(0.900), d(IA) (0.945), RMSE
(0.454), MAE (0.280), MAPE (9.885) and CE (0.809) among
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all combinations of ANN1 model, so network architecture 1-
7-1 trained with trainlm training function  defined as the
best architecture for ANN1 model. The results for
identification of ANN2 (as inputs: Tmax and Tmin); ANN3
(as inputs: Tmax, Tmin and SSH;  ANN4 (as inputs: Tmax,
Tmin, RHmax, RHmin, and SSH) ; ANN5 (all inputs: Tmax,
Tmin, RHmax, RHmin, WS and SSH) models were presented
in Table 2, It was also observed that various network
architectures with varying hidden neurons in light of
statistical performance measures showed satisfactory
performance. However, network architecture 2-15-1 has the
best values of all six performance criteria as R (0.938), d(IA)
(0.967), RMSE (0.359), MAE (0.224), MAPE (7.881) and
CE (0.880) among all combinations of ANN2 model; network

architecture 3-19-1 has the best values of all six performance
criteria as R (0.969), d(IA) (0.984), RMSE (0.257) MAE
(0.165), MAPE (5.752) and CE (0.939) among all
combinations of ANN3 model; network architecture 5-17-1
has the best values of four performance criteria as R (0.976),
d(IA) (0.988), RMSE (0.227) and CE (0.952) among all
combinations of ANN4 model; network architecture 6-13-1
has the best values of all six performance criteria as R
(0.996), d(IA) (0.998), RMSE (0.096), MAE (0.057), MAPE
(2.191) and CE (0.991) among all combinations of ANN5
model. Hence network architecture 2-15-1, 3-19-1, 5-17-1
and 6-13-1 trained with trainlm training function defined as
the best architectures for ANN2, AANN3, ANN4 and ANN5
models respectively.

Table 1: Selected variables for the development of ANN architecture in ET
o
modelling.

Particulars ANN Models

ANN1 ANN2 ANN3 ANN4 ANN5

Network type Feed Forword back propogation

Inputs Epan Tmax, Tmax, Tmax, Tmin, Tmax, Tmin,

Tmin Tmin and  RHmax, RHmin RHmax, RHmin,

SSH and SSH WS and SSH

No. of nodes in input layer 1 2 3 5 6

No. of hidden layers 1 1 1 1 1

No. of nodes in hidden layer 3 to 19 (alternatively)

No. of nodes in output layer 1 1 1 1 1

Training algorithm Levenberg-Marquardt algorithms, (trainlm).

Transfer function Log sigmoid in hidden layer and Linear function in output layer

Table 2: Performance evaluation of best fit ANN models with limited and full data for Padegaon Station

Model Training Network                  Statistical Criteria

function R d(IA) RMSE MAE MAPE CE

Training period (1990-2009)

ANN1 trainlm 1-7-1 0.900 0.945 0.454 0.280 9.885 0.809

ANN2 trainlm 2-15-1 0.938 0.967 0.359 0.224 7.881 0.880

ANN3 trainlm 3-19-1 0.969 0.984 0.257 0.165 5.752 0.939

ANN4 trainlm 5-17-1 0.976 0.988 0.227 0.139 4.827 0.952

ANN5 trainlm 6-13-1 0.996 0.998 0.096 0.057 2.191 0.991

Validation period (2010-2014)

ANN1 trainlm 1-7-1 0.909 0.934 0.431 0.291 11.761 0.730

ANN2 trainlm 2-15-1 0.884 0.890 0.609 0.383 14.932 0.461

ANN3 trainlm 3-19-1 0.925 0.943 0.418 0.261 9.977 0.745

ANN4 trainlm 5-17-1 0.950 0.952 0.394 0.244 9.256 0.775

ANN5 trainlm 6-13-1 0.969 0.984 0.214 0.135 5.522 0.933
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Performance evaluation of models

Table 2 shows the statistical performance of best fit
ANN models of  limited (ANN1 to ANN4) and full (ANN5)
data conditions during training and validation period for
Padegaon Station. During training mode, it was observed
that ANN5 model showed best values of all performance
measures as higher values of R (0.996), d(IA) (0.998), CE
(0.991) and lower values of RMSE (0.096), MAE (0.057),
MAPE (2.191) while ANN1 model shows lower performance
among them as R (0.900), d(IA) (0.945), CE (0.809), RMSE
(0.454), MAE (0.280) and MAPE (9.885). It was observed
that the values of R, d(IA) and CE shows increasing trend
while the values of  RMSE, MAE and MAPE shows decreasing
trend with respect to increasing number of input parameters
for all ANN models. It reveals that ANN5 model shows best
performance followed by ANN4, ANN3, ANN2 and ANN1
model. The reason is that ANN5 requires all six inputs (Tmax,
Tmin, RHmax, RHmin, WS and SSH) while remaining limited
data ANN models require less parameter in decreasing order
as ANN4 (Tmax, Tmin, RHmax, RHmin, and SSH), ANN3
(Tmax, Tmin, and SSH), ANN2 (Tmax and Tmin) and it was
agrees with the findings of Huo et al. (2012) that ANNs with
five inputs were more accurate than those with four or three
for prediction of ET

o
 in arid and semiarid areas of northwest

China. Considering limited data condition, it was observed
that the results of all performance measures for all limited
data (ANN1 to ANN4) models varies in the range as R (0.900
to 0.976), d(IA) (0.945 to 0.988), RMSE (0.227 to 0.454),
MAE (0.139 to 0.280), MAPE (4.827 to 9.885) and CE
(0.809 to 0.952). It can be seen that all limited data models
demonstrate relatively very close performances for statistical
criteria; hence it reveals that all limited data models can be
used for prediction of ET

o

The results for the validation of all ANN models are
shown in Table 2. In ANN1 model, the value of the R in
training stage is 0.900 and it increases to 0.909 in validation
stage, similar kind of enhancement also occurred in MAE
(0.280 to 0.291), MAPE (9.885 to 11.761) for ANN1 model.
It was also observed that there was reduction in the values
of d(IA), RMSE and CE during validation of ANN1 model as
0.945 to 0.934, 0.454 to 0.431 and 0.809 to 0.730
respectively. It indicates that ANN1 model showed slightly
increase in performance in training stage than validation
stage, however it shows close difference in enhancement
and reduction of each performance measures during training
and validation of ANN1 model. Similar kind of close difference
for each performance measures were occurred during training
and validation stage of remaining ANN models. It indicates

that all ANN models were validated satisfactorily and
generalized for prediction of ET

o
 values. Overall, the

performance suggests that all ANN models can be an
acceptable approach for accurate prediction ET

o
 values for

Padegaon station as per data availability.

Thus it can be concluded that the network architecture
1-7-1, 2-15-1, 3-19-1, 5-17-1 and 6-13-1 trained with trainlm
training function found the best architectures for ANN1 (as
input: Pan evaporation); ANN2 (as inputs: Tmax and Tmin);
ANN3 (as inputs: Tmax, Tmin and SSH;  ANN4 (as inputs:
Tmax, Tmin, RHmax, RHmin, and SSH) ; ANN5 (all inputs:
Tmax, Tmin, RHmax, RHmin, WS and SSH) models
respectively. Overall performance suggest that all ANN
models can be an acceptable approach for accurate
prediction ET

o
 values for Padegaon region under limited and

full data availability.
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