Drought is a natural disaster that starts with a decrease in precipitation and negatively affects the hydrological balance, water budget and crops. Various yield estimation models are used to determine crop yield (Boualem, 2023). Various drought indices like Palmer Drought Severity Index (PDSI), Reconnaissance Drought Index (RDI) and Standard Precipitation Index (SPI) are used to determine drought severity. Gocic and Trajkovic (2013) analyzed the trend of SPI in Serbia. In Turkey, Oguz et al., (2021) examined the trend and drought in Mugla region. Nouri and Homaei (2019) applied gamma and log-logistic distribution in their study for SPI and SPEI and concluded that SPI do not correlate well with SPEI in arid regions. The studies of Ouatiki et al., (2019), Alsafadi et al., (2020), and Naz et al., (2020) show that drought tendency is increasing in the World, especially in the Mediterranean watershed. Dabanli (2019) determined that 5 out of 81 provinces in Turkey have low drought risk, 61 provinces are at medium drought risk and 14 provinces have high drought risk. Thrace is one of the driest regions (500 water falls in Thrace). The Thrace side of the Marmara Region is especially more prone to drought (60% of Thrace is agricultural land). Along the Marmara Sea coast, Mediterranean climate type (summer seasons are dry and winter seasons are rainy) is seen. Average temperature is 14 °C and monthly total precipitation average is 580 mm. Considering the scarcity of studies on meteorological drought in Thrace, which is one of the arid regions in Turkey, this study was planned to investigate the effect of drought on agriculture in Thrace.

The monthly precipitation data of two stations viz Tekirdag (Lat. 40.95°N, Long. 27.49°E) for the period of 1941-2020 and Edirne (Lat. 41.67°N, Long. 26.55°E) for the period of 1953-2020 were obtained from Meteorological General Directorate of Turkey. The yield data of wheat, sunflower and barley crops for two provinces (Edirne and Tekirdag) for the period of 2004 and 2021 were obtained from Turkish Statistical Institute (2023). Standard precipitation index (SPI) was used to determine the meteorological drought. A distribution function was fitted to the rainfall data. The gamma distribution is the most suitable for rainfall data. Cumulative probabilities calculated by the distribution function was then converted to SPI values, which has a standard deviation of 1 and a mean of 0 (McKee et al., 2013). The trend analysis was carried out using a non-parametric method (M-K test) and Sen’s slope method (Oguz et al., 2021). The SPI values were further related with the yields of wheat, sunflower and barley crops of 2004-2021 using simple regression technique. Suitable statistical distribution for the data was determined in DrinC model. 3-month seasonal analysis (October-November-December, January-February-March, April-May-June, July-August-September, respectively) were produced. Afterwards, drought severity was calculated along with trend analysis. SPI of different scale (1, 3, 6, 9, and 12 months) were obtained from the DrinC model. Besides, XLSTAT program was used to obtain for the different scale results of the trend analysis.

The results of the M-K trend and the SPI results are in parallel. If it is accepted that drought will decrease sunflower yield, a parallelism is determined between the SPI results and the crop yield trend. Even in the prone to drought climate in Tekirdag, wheat and barley yields were very high. In this case, it was concluded that grain yields were not adversely affected by drought in Tekirdag conditions. Moreover, the crop most coherent with the drought results in Thrace was sunflower. The trend analysis method that best represents the result of the SPI was M-K (Kendall’s tau). The graphs of wheat and barley yields in the grain group were very similar to each other in terms of both shape and count (Table 1).
Table 1: Drought-trend and (crop yield) comparison in Tekirdag and Edirne during 2004-2021

<table>
<thead>
<tr>
<th>Province</th>
<th>Drought (SPI)</th>
<th>Wheat</th>
<th>Sunflower</th>
<th>Barley</th>
<th>Trend of the drought (SPI)</th>
<th>Kendall’s tau</th>
<th>p-value</th>
<th>Sen’s slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edirne</td>
<td>0.39 (normal)</td>
<td>37.6</td>
<td>22.3</td>
<td>40.7</td>
<td>0.072 No trend (Increasing)</td>
<td>0.705</td>
<td>0.006</td>
<td>-0.049</td>
</tr>
<tr>
<td>Tekirdag</td>
<td>-0.03 (normal)</td>
<td>41.3</td>
<td>20.7</td>
<td>45.3</td>
<td>-0.150 No trend (Decreasing)</td>
<td>0.405</td>
<td>0.045</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 2: Trend analysis of the SPI in Tekirdag and Edirne

<table>
<thead>
<tr>
<th>Province</th>
<th>SPI 1</th>
<th>SPI 3</th>
<th>SPI 6</th>
<th>SPI 9</th>
<th>SPI 12</th>
<th>SPI 1</th>
<th>SPI 3</th>
<th>SPI 6</th>
<th>SPI 9</th>
<th>SPI 12</th>
<th>Kendall’s tau</th>
<th>p-value</th>
<th>Sen’s slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edirne</td>
<td>0.940</td>
<td>0.459</td>
<td>0.447</td>
<td>0.532</td>
<td>0.453</td>
<td>-0.002(↑)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekirdag</td>
<td>0.322</td>
<td>0.066</td>
<td>0.039</td>
<td>0.034</td>
<td>0.022</td>
<td>0.045 (↑)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Relation between crop yields and SPI

In this study, the trend analysis method that best represents the result of the SPI was M-K (Kendall’s tau). It was understood that an agriculturally wet situation prevailed in Tekirdag. Besides, in Tekirdag conditions, there were stronger relationships between the effects of drought and crop yields. Non-climatic factors such as crop type, fertilization, crop diseases and pests have an extreme impact on crop yield. Therefore, the correlation between drought and crop yield may be weak. For this reason, it is recommended that non-climatic factors also should be improved.

ACKNOWLEDGMENT

This study does not require ethics committee approval. The article has been prepared in accordance with research and publication ethics. The author thanks Dr. M. Utku YILMAZ for his contribution.

Funding: The research was conducted without financial support.

Data Availability: The author confirms that the data supporting this study are available in this manuscript.

Conflict of Interest Statement: The author declares that there is no conflict of interest.

Author Contribution: The author did analysis and writing.

Disclaimer: The contents, opinions, and views expressed in the research article published in the Journal of Agrometeorology are the views of the authors and do not necessarily reflect the views of the organizations they belong to.

Publisher’s Note: The periodical remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

REFERENCES


