
 Land Surface Temperature (LST) as a fundamental 
parameter enables the identification of ideal land areas for target 
crop selection, while also serving various additional agronomical 
and meteorological purposes. These include crop pest and 
disease monitoring, water management optimization, plant 
stress assessment, yield estimation, weather forecasting, drought 
monitoring, climate change, surface energy balance, air-temperature 
and evapotranspiration retrieval (Heinemann et al., 2020; Hu et al., 
2020; Fisher et al., 2020; Li et al., 2013; Shah et al., 2012). The 
retrieved LST from satellite observations is ideal for water resource 
management, agricultural and meteorological studies because it 
provides frequent and extensive coverage data. In a recent study 
conducted by Parmar and Gontia (2019), LST was acquired from 
Landsat imagery, and they established the correlation between LST 

and vegetation index, where they found that the LST decreases 
with an increase in the vegetation index. Retrieval of the LST using 
satellite data is an arduous and tactical process requiring information  
of a land cover type, sensor geometry, atmospheric parameters, and 
atmospheric transmittance. The Thermal InfraRed (TIR) region 
(8-14µm) is preferable for the LST retrieval, where only a few 
atmospheric constituents affect the radiation, mainly Water Vapor 
(WV) (Pandya et al., 2011; Dave et al., 2021). However, in the 
LST retrieval, the Land Surface Emissivity (LSE) has the most 
significant role because LSE overlaid atmospheric attenuation in the 
TIR region. The scientific community has dedicated many efforts 
to the implantation of methodology to retrieve LST from remotely 
sensed data. Some tremendously developed methods are Single 
Channel (SC) algorithm (Pandya et al., 2014; Jiménez-Muñoz and 
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MODIS Land Surface Temperature (LST) product is extensively used in agricultural studies like crop health assessment, soil moisture estimation, 
irrigation management, land use land cover change, air-temperature retrieval and crop water stress detection. Numerous studies have used Split 
Window (SW) algorithm to retrieve LST from MODIS TIR bands. Among them, some utilize Sensor View Angle Dependent (SVAD) or 
Columnar Water Vapor Dependent (CWVD) SW algorithm. Present study aims to make use of SVAD and CWVD SW algorithms and compare 
them to evaluate the LST retrieval accuracy over various land surface type. Theoretical accuracy assessment of the CWVD and SVAD algorithms 
demonstrates a good accuracy with the an RMSE of 1.09K and 1.42K, respectively. The experimental retrieval of LST achieves exceptionally 
good accuracy, with a RMSE of 1.45K in the CWVD algorithm and 1.80K in the SVAD algorithm, particularly in heterogeneous regions. In 
homogeneous regions, the RMSE values are 1.14K in CWVD and 1.10K in SVAD. Both algorithms exhibit satisfactory accuracy; nevertheless, 
the application of these algorithms may vary in agricultural contexts. Based on the obtained results and the inclusion of required parameters, we 
have arrived at a conclusion regarding the superior performance of the SVAD compared to the CWVD for LST retrieval.
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Sobrino, 2009), hybrid Temperature Emissivity Separation (TES) 
algorithm (Gillespie et al., 1998), Alpha derived emissivity method 
(Hulley et al., 2021), Day-Night (D/N) measurement method (Li 
and Becker, 1993), Normalized Emissivity Method (NEM) (Valor 
et al., 2003) and Multichannel algorithm also known as Split 
Window (SW) algorithm (Li et al., 2013). Methods of retrieving 
LST employ various assumptions to account for the influence of 
atmospheric effect and LSE in the TIR region. Among them, SW 
algorithms are the most suitable method which utilizes two different 
adjacent absorption thermal bands for atmospheric correction and 
to differentiate the atmospheric properties (Price 1984). Prabhakara 
et al. (1974) discussed the basal knowledge of the SW algorithms 
to retrieve Sea Surface Temperature (SST) using Advanced Very 
High-Resolution Radiometer (AVHRR) data. Price (1984) took 
the lead in the LST SW technique; subsequently, Coll et al. (1994) 
enhanced the algorithm by adding spectral LSE and Sensor View 
Angle (SVA).

 This study represents the intercomparison and sensitivity 
analysis of the Columnar Water Vapor (CWV)-Dependent (CWVD) 
and SVA-Dependent (SVAD) SW algorithms for the LST retrieval. 
SW coefficients have been derived for the Moderate Resolution 
Imaging Spectroradiometer (MODIS) TIR bands, and LST has 
been successfully retrieved using both SW algorithms over the 
Australian continent (Sobrino et al., 1993). Here, SW coefficients 
have been derived through the utilization of simulated at-sensor 
radiance data generated by the MODerate resolution atmospheric 
TRANsmission (MODTRAN) 5.3 Radiative Transfer (RT) model. 
In this regard, 80235 at-sensor radiance simulations were computed 
using 80 SeeBor atmospheric profiles. The paper is structured as 
follows: it begins with study area and data used, then providing a 
detailed explanation of the atmospheric RT theory and theoretical 
background of the SW algorithm. Subsequently, the approach 
employed in this study is elaborated upon. The paper then proceeds 
to illustrate the discussion surrounding the derived SW coefficients, 
sensitivity analysis of the algorithms, and the accuracy assessment 
of the retrieved LST. Finally, the obtained outcomes from this study 
are presented in the conclusion, respectively.

MATERIALS AND METHODS

Study area and data used

 In this study, cloud-free MODIS MYD09CMG and 
MYD11C1 data of the day 284 of 2020 has been acquired. There is 
no particular aim for the selection of data acquisition day. However, 
cloud-free data was the priority. The method has been applied in the 
Northern Territory, Southern, and Queensland of Australia. Australia 
has many different land covers, but most regions are covered 
by non-vegetate and open shrubland, and the second most land 
covers are cropland and forest (Sayre et al., 2020). Therefore, this 
selected region is most suitable for the comparison of two different 
parameters-based on SW algorithm, as the larger homogeneity 
and heterogeneity of land cover provides steady results. Eighty 
SeeBor atmospheric profiles were utilized to simulate the at-sensor 
radiance. SeeBor database providing the global atmospheric profiles 
by comprising the satellite, laboratory and ground stations data 
(Borbas et al., 2005). The profiles were carefully chosen within the 
range of 0.1gm·cm-2 to 5.0gm·cm-2, apart from these are considered 
as saturated CWV.

Fundamentals of atmospheric radiative transfer

 At-sensor radiance is a vital parameter in satellite remote 
sensing, which is attenuated by atmospheric parameters. The 
phenomenon of atmospheric attenuation affecting a signal can 
be comprehensively elucidated by the RT theory, which can be 
expressed by the following equation.

 (1)

 Where, L(T) represents the at-sensor radiance 
corresponding to a specific Brightness Temperature (BT) denoted 
as T, B(TS),  signifies Planck’s radiation associated with the LST 
specified as TS, τ is the atmospheric transmittance, L↑  is the up-
welling atmospheric radiance, L↓

DWR is the down-welling atmosphere 
radiance reflected from the surface to sensor and ε is the spectral 
LSE. 

Fig. 1:  Linear relation between radiance and LST for MODIS 
TIR Bands 31 & 32. The data has been obtained from the 
MODTRAN 5.3 RT model, employing a nadir view, with a 
land type of forest and a CWV value of 3 gm·cm-2.

 The direct relation between at-sensor radiance and LST is 
clearly shown in the RT Equation (RTE). Accordingly, the direct and 
substantial contribution of the RTE becomes evident in the methods 
employed for the retrieval of LST. In most cases, a linear relationship 
exists between at-sensor radiance and LST. Fig. 1 shows the linear 
relation of the at-sensor radiance of MODIS TIR bands and LST for 
same land cover and atmospheric geometries, which are obtained 
using the MODTRAN 5.3 RT model-derived simulations. The 
disparity in both bands’ at-sensor radiance is used for atmospheric 
correction in SW algorithms. Furthermore, this disparity varies with 
land cover types, atmospheric conditions and viewing geometries, 
which is resolved by utilizing a spectral LSE in the SW algorithm 
and also considering the effect of view angle.  

Theoretical perspective of split-window algorithm

 The SW algorithm corrects the atmosphere effect using 
two adjacent atmospheric absorption bands and considering the 
minimal variation in the emissivity in the adjacent channels. It 
is applied for the LST retrieval by linear/non-linear annexation 
of at-sensor radiance or BT. Therefore, the SW method has been 
categorized into two parts, the linear SW method and the non-
linear SW method. The general form of linear and non-linear SW 
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equations are as follows: 

 (2)

 (3)

 Where, Ak are the SW coefficients, Ti and  Tj are BT 
of bands i and j. The value of Ak (k = 0,1,2,3, …) depends on 
spectral LSE, CWV, and SVA. Hence, numerous SW algorithms 
have been developed, wherein the dependent variables encompass 
combinations involving LSE, CWV, and SVA. In this study, the 
SW algorithm developed by Sobrino et al. (1993) has been used. 
It contained coefficients are least dependent on the atmosphere 
variability and highly dependent on LSE. Thus, the errors caused 
by LSE are easily evaluated, and the atmospheric changes are 
eliminated by developing different series of coefficients according 
to SVA or CWV. Therefore, the algorithm provides greater accuracy 
in highly volatile atmospheres and heterogenous land types. The 
analytical expression of the SW algorithm is.

 (4)

 Where TS is LST, ε is the average LSE of the two bands  
(ε = (εi + εj)/2), and  dε is the LSE difference of two bands  
(dε = εi - εj). 

The approach of split-window algorithms development

 We have divided the present study into four parts; (1) 
Forward simulations of at-sensor radiance using MODTRAN 5.3 
RT model; (2) Required inputs data collection and development 
of SW coefficients; (3) LST retrieval using MODIS TIR data; (4) 
Intercomparison of retrieved LST. By deriving significant inputs 
such as LSE and CWV from MODIS data, errors caused by these 
parameters are minimized in the algorithm. Total 80235 at-sensor 

RT simulations were performed, encompassing variation in LST 
ranging from -10K to +15K in the step of 5K, CWV ranging 
from the 0.1gm·cm-2 to 5.0gm·cm-2 in the step of 0.5gm·cm-2, and 
SVA: 0,10,20,30,35,40 and up to 70 degree. These simulations 
were conducted for various International Geosphere–Biosphere 
Programme (IGBP) land classes, including evergreen broadleaf 
forest, open and closed scrub, savanna, woody savanna, grassland, 
cropland, water and urban area. The spectral at-sensor radiances 
obtained from simulations using the MODTRAN 5.3 RT model 
have been converted into specific finite bands corresponding to the 
sensor’s Relative Spectral Response (RSR) function. RSR of both 
TIR bands 31 and 32 of MODIS terra has been used. The weighted 
average value has been found using the following equation. 

 (5)

 Lλ is the weighted average value of at-sensor radiance,   
l( λ) is spectral at-sensor radiance, and  f( λ) is the RSR of a specific 
band of MODIS. The obtained weighted at-sensor radiance for both 
bands converted into the BT (Ti and Tj ) using Planck’s radiance 
equation. SW coefficients of both algorithms have been derived by 
applying linear statistical regression analysis over the SW equation 
(4). The coefficients are categorized into various ranges of CWV 
and SVA for a particular algorithm. The utilization of categorical 
coefficients provides a higher level of accuracy in estimating LST 
compared to employing a wide range of coefficients.

 CWVD and SVAD SW algorithms have been formulated 
based on derived coefficients. The selection of categorized 
coefficients is based on the input values of CWV and SVA. 
Subsequently, LST is retrieved using pertinent parameters such 
as LSE and BT. The LST obtained through both techniques 
was compared against the standard LST product of MODIS to 
evaluate their accuracy. The analysis of results obtained from both 
SW algorithms revealed very good accuracy, and subsequently, 

Fig. 2: Simple flow chart of SW algorithm development for LST retrieval using MODIS TIR data.
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a comparative assessment between these two algorithms was 
conducted. Under the development of this study, the following steps 
were carried out and shown in the flow chart (Fig. 2). 

RESULTS AND DISCUSSION 

Analysis of obtained split-window coefficients

 CWVD and SVAD SW algorithms have been developed 
for the LST retrieval and investigated the accuracy of both 
algorithms. The SW algorithm contains six coefficients that 
depend independently on surface and atmospheric parameters. The 
coefficients of CWVD algorithm are defined for five distinct ranges 
of CWV. Table 1 displays the coefficients, standard error and R2 
values for each respective range. Here, the maximum standard error 
of the theoretical algorithm is 2.46K at a higher value of CWV. 

The error exhibits an increasing trend as CWV values range from 
lower to higher values, primarily attributed to the variability of 
atmospheric transmission.

  An analysis of atmospheric transmittance is conducted 
across specific MODIS TIR band, considering different values 
of CWV. As the CWV increases, the atmospheric transmittance 
decreases, at the higher values of CWV, the combined effects of 
CWV and SVA are responsible for significant decrement (Fig. 3). In 
Fig. 3, the transmittance decreases from 0.3163 to 0.0214 as SVA 
increases from smaller to larger values, particularly at higher CWV 
value (4.5gm·cm-2). 

 In Fig. 3, there is no significant change in transmittance up 
to 20 degrees. Therefore, we developed a single coefficient for the 
SVA range from 0 to 20 degree, then, coefficients are developed in 
the interval of 5 degrees ranges from 20 to 72 degrees as significant 
changes are observed at higher values of SVA. The developed SVAD 
SW coefficients have been alienated into eleven ranges of SVA 
(Table 2). The standard error and R2 values demonstrate a high level 
of accuracy for SVAD algorithm. The standard error remains below 

Table 1: Derived SW coefficients of CWVD.

CWV in gm·cm-2 A0 A1 A2 A3 A4 A5 R2 Standard 
Error in K

[0.10,0.25] -10.0701 1.0336 -1.5589 0.1275 79.5348 70.6006 0.9995 0.21
[0.25,1.00] -12.6088 1.0426 -1.5856 0.0786 77.7766 69.9523 0.9992 0.27
[1.00,2.50] -31.0442 1.1104 -1.0864 0.2317 56.5995 26.5681 0.9882 1.09
[2.50,3.70] -47.8013 1.1763 6.8228 -0.5516 34.8731 -159.732 0.9565 1.95
[3.70,5.00] 01.8715 0.9986 9.7931 -0.0752 28.9096 -85.8281 0.8865 2.46

Table 2: Derived SW coefficients of SVAD.

SVA in Degree A0 A1 A2 A3 A4 A5 R2 Standard 
Error in K

[00.00,20.00] -20.0436 1.0750 4.1566 1.1340 33.3528 -258.1199 0.9798 1.41
[20.00,27.50] -21.0130 1.0787 4.1249 1.3011 33.0241 -257.1598 0.9789 1.44
[27.50,32.50] -22.3506 1.0839 4.1068 1.4758 32.7158 -255.1758 0.9776 1.49
[32.50,37.50] -23.3244 1.0876 4.1124 1.5696 32.5541 -253.6251 0.9766 1.52
[37.50,42.50] -24.5585 1.0923 4.1390 1.6591 32.3861 -251.7027 0.9754 1.56
[42.50,47.50] -26.1102 1.0983 4.1997 1.7377 32.1928 -249.5261 0.9736 1.62
[47.50,52.50] -28.1320 1.1061 4.3118 1.8051 31.9380 -247.2287 0.9712 1.69
[52.50,57.50] -30.7948 1.1165 4.5036 1.8613 31.5466 -245.1428 0.9677 1.79
[57.50,62.50] -34.4207 1.1307 4.8151 1.9189 30.9026 -243.3981 0.9623 1.93
[62.50,67.50] -39.6981 1.1518 5.3370 2.0022 29.8265 -241.9671 0.9532 2.15
[67.50,72.50] -48.0154 1.1858 6.3038 2.1728 27.9547 -239.9701 0.9353 2.54

Fig. 3:  Atmospheric transmittance is the function of the SVA for 
various CWV values, data have been derived from the 
MODTRAN 5.3 RT model for the tropical atmosphere at a 
300K LST.

Fig. 4: LST error in K for different LSE errors. (a) CWVD SW 
algorithm; (b) SVAD SW algorithm.

DAVE et al



514 December 2023

2.54K up to 72.50 degrees, indicating the successful development of 
the algorithm and coefficients.  

Sensitivity analysis of developed split-window algorithms

 The development of the SW algorithm for retrieving LST 
requires LSE, CWV, SVA and at-sensor BT. Therefore, errors in those 
parameters can affect the accuracy of LST. In the present study, nine 
various LSE have been taken during the algorithm development. 
The SW algorithm (Sobrino et al., 1993) is highly sensitive and 
dependent on LSE and least sensitive to the atmospheric WV as 
discussed earlier. Therefore, the LSE error’s impact on LST must be 
studied in the development of the algorithm. The following equation 
has been used to analyse the LSE error on the SW algorithm for 
retrieving LST.

 (6)

	 Where	δTs is the LST error, x	is	LSE,	and	δx is considered 
the LSE error,  Ts (x+δx) and  Ts (x) are retrieved LST with the value 
of  (x+δx) and (x), respectively. The sensitivity analysis was carried 
out over eighty thousand simulations datasets and calculated Root 
Mean Square Error (RMSE) of bias and standard deviation. This 
analysis has been carried out for both SW algorithms (Fig. 4).

 The sensitivity analysis was carried out for the each 
values of  SVA and CWV. Analysis has been done using the Analysis 

of Variance (ANOVA) single-factor test. The LST error variance of 
various CWV or SVA has been derived for particular LSE error. For 
example, when considering an LSE error of 0.015, the LST error 
variance indicates how much the average LST error increases with 
an increase in CWV or SVA. A higher variance signifies a greater 
influence of the LSE error on the LST error. The LST error variance 
in the CWVD algorithm is 0.0005K, 0.0051K, 0.0144K, 0.0282K, 
0.0566K, 0.0576K, 0.1297K, for 0.001, 0.003, 0.005, 0.007, 0.01, 
0.015 LSE error (Fig. 4a). The LST error variance in the SVAD 
algorithm is 5.10094E-06K, 1.41803E-05K, 2.92396E-05K, 
5.67451E-05K, 0.00012767K, 0.000226975K for 0.003, 0.005, 
0.0075, 0.01, 0.015, 0.02 LSE error (Fig. 4b). 

Accuracy assessment of retrieved LST

 Developed SVAD and CWVD SW algorithms have 
been applied over two different land types (Homogeneous and 
Heterogeneous) on MODIS TIR data for the LST retrieval. The 
proper land types selection has been performed using the MODIS 
world land use and land cover data. Accuracy assessment of the 
retrieved LST is the most essential for understanding accuracy of 
the algorithms. Here, we used MODIS standard LST data products 
as reference for the assessment. Pixel-to-pixel comparisons between 
MODIS LST and retrieved LST have been represented by a scatter 
graph (Fig. 5). In the previous section, we discussed the variability 
of LSE, making retrieving LST more challenging. Therefore, we 

Fig. 5: Comparison between MODIS LST and retrieved LST in K. (a) For the CWVD SW algorithm, land type: Heterogeneous; (b) For the 
SVAD SW algorithm, land type: Heterogeneous; (c) For the CWVD SW algorithm, land type: Homogeneous; (d) For the SVAD SW 
algorithm, land type: Homogeneous.

Analysis of two parameter-dependent split window algorithms for the LST retrieval
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applied both algorithms on the heterogeneous and homogeneous 
land types to check the accuracy of the developed algorithms. The 
pixel-to-pixel comparison of retrieved and standard MODIS LST 
images has been carried out; each black dot in the scatter graph 
represents the pixel values of LST images. 

 Fig. 5 (a) and (b) represent the heterogeneous land type, 
whereas (c) and (d) for the homogeneous land type. The R2 value 
for all four conditions is 0.99, which shows the good correlations 
between the retrieved LST and MODIS LST. Nevertheless, the 
RMSE for the heterogeneous land type is 1.45K in the CWVD 
algorithm and 1.80K in the SVAD SW algorithm (Fig. 5 (a) and 
(b)), while for the homogeneous land type, it is 1.14K in CWVD and 
1.10K in SVAD SW algorithm (Fig. 5 (c) and (d)).

CONCLUSION

 This study evaluates the accuracy of SW algorithms 
based on SVA and CWV to determine the most reliable and accurate 
approach for the LST retrieval. The SVAD and CWVD algorithms 
derived LST pixel values are outstandingly matching with MODIS 
LST over different land covers and various values of CWV and 
SVA. A comparison of the retrieved LST results of both algorithms 
with MODIS LST shows R2 values of 0.99 with an RMSE range 
from 1.10K to 1.80K. According to the result, the SVAD SW 
algorithm is more reliable than the CWVD SW algorithm as most 
of the satellites provide SVA, which makes LST retrieval easy. In 
contrast, the CWVD SW algorithm requires CWV values at the 
time of satellite over pass. Therefore, the value of CWV has to be 
obtained either from the ground station or using the direct product 
of CWV, which construct the method prolonged and also affects 
the accuracy. Therefore, SVAD algorithm will be highly reliable in 
agricultural applications. For instance, plant stress assessment and 
evapotranspiration requires geometric arrangements of the crop, 
which impacts in leaf area index and canopy archietecture. However, 
in the development of the SVAD algorithm, the prior knowledge of 
atmospheric effect on the signal is must for the optimum algorithm 
accuracy.  
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