
 Global population growth, climate change, competition 
from other uses, and increased regulation of agricultural water use 
are causing water to become increasingly scarce (Boretti and Rosa, 
2019; Kisekka et al., 2022). So, advanced technologies are required 
to optimize water use in agriculture urgently. Evapotranspiration 
(ET), as an essential part of crop water use, has several agricultural, 
climatological, and hydrological applications like estimating 
crop water stress, surface runoff, irrigation scheduling, drought 
management, and water budget analysis (Cleverly et al., 2015; 
Sholihah et al., 2016; Bag et al., 2020; Kumar et al., 2020). 
Conventional methods, such as lysimeters, eddy covariance 
systems, Bowen ratio energy balance (BREB), and tower flux, 
though they provide ET estimates at higher accuracy based on 
local meteorological data, are point-based strategies rather than an 
assessment of spatial ET distribution (Jin et al., 2018).

 Remote sensing (RS) offers a relatively frequent and 
spatially contiguous means of tracking surface biophysical 
parameters that influence ET, such as albedo, vegetation type, and 
density, on a global scale (Parmar and Gontia, 2016; Pimpale et 
al., 2015; Chattopadhyay et al., 2016). ET mapping based on RS 
is a low-cost method of estimating and monitoring this flux. RS-
based ET estimation algorithms estimate ET using visible to thermal 
infrared multispectral bands (Li et al., 2012; Pimpale et al., 2015). 
Satellites or platforms with different remote sensing sensors can 
provide these multispectral data with different temporal and spatial 
resolutions (Nigam et al., 2008; Ezenne et al., 2023). The Surface 
Energy Balance Algorithm for Land (SEBAL) model (Bastiaanssen 
et al., 1998), the Simplified Surface Energy Balance (SSEB) model 
(Senay et al., 2011), Surface Energy Balance System (SEBS) model 
(Su, 2002), Mapping Evapotranspiration at a High Resolution with 
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Evapotranspiration (ET) plays a crucial role in the energy and water balance of agricultural ecosystems and is a vital component of the hydrological 
cycle. Efficient irrigation water management relies on accurate spatiotemporal coverage of crop ET across a farm. Thanks to the availability of 
multi-temporal high-resolution satellite datasets and remote sensing-based surface energy balance models, near-real-time estimation of ET is 
now possible. This study utilized Landsat 8/9 data to estimate ET using the simplified surface energy balance index (S-SEBI) model, which was 
then compared to eddy covariance measurements over a semi-arid agricultural farm in New Delhi, India during the post-monsoon periods of 
2021-22 and 2022-23. The S-SEBI model predicted daily ET from Landsat 8/9 data with an average correlation coefficient and RMSE of 0.89 
and 0.79 mm/day, respectively. The spatiotemporal map was also used to evaluate the model’s performance, and it could accurately differentiate 
between ET over dryland crops and well-irrigated wheat fields on the farm. Despite underestimating ET (0.51 mm/day) during the initial 
growing season (Nov-Dec) and overestimating it (0.73 mm/day) during mid-season (Feb-Mar), the S-SEBI model can still be an operational tool 
for mapping ET with high accuracy and sufficient variation across pixels, making it an ideal option for incorporating into irrigation scheduling.

Keywords: Evapotranspiration, S-SEBI, Eddy Covariance, Land Surface Temperature

ABSTRACT 



366 September 2023

Internalized Calibration (METRIC) model (Allen et al., 2007), 
Surface Energy Balance Index (SEBI) (Menenti and Choudhury, 
1993), Simplified-Surface Energy Balance Index (S-SEBI) (Roerink 
et al., 2000), and Two Source Energy Balance model (TSEB) 
(Colaizzi et al., 2012; Norman et al., 1995)  are examples of RS-
based ET estimation algorithms.

 The S-SEBI model initially proposed by Roerink et al., 
(2000) was extended to map daily ET in such a way that sensible 
and latent heat fluxes (H and LE) are computed combinedly through 
the evaporative fraction (Gomez et al. 2005; Sobrino et al. 2005). In 
contrast to other methods that attempt to fix the temperature for wet 
and dry conditions across the entire image, the S-SEBI can estimate 
the surface energy balance (SEB) by considering its wet and dry 
conditions. It is also not necessary to have any extra meteorological 
inputs. Consequently, S-SEBI is relatively straightforward to apply, 
which makes it suitable for regions lacking in situ data and can 
generate continuous operational ET products over agricultural areas. 
The S-SEBI model computes ET from the land surface temperature 
(Ts) and albedo relationship through evaporative fraction calculation 
by defining the temperatures in drier and wetter regions.

 Despite significant developments in the last few decades, 
remote sensing-based ET models still face uncertainties, when 
applied to new environments for which they are not designed or 
calibrated. As a result, it is constantly a research topic to assess the 
efficiency of remote sensing-based ET monitoring methods (Chen 
et al., 2022). The robustness of these RS-based models remains 
unclear, with the question of whether they can be considered 
“best” or at least valid under field conditions. We hypothesized 
that using albedo vs land surface temperature in a trapezoidal space 
would evolve into a better estimation of ET compared to single 
values for hot and cold pixels in an image. This is also a simple, 
straightforward, and less data-intensive method and can be easily 
adapted for irrigation scheduling in semi-arid farms. This study 
used S-SEBI to estimate and validate the actual ET spatially using 
Landsat 8/9 datasets for the two rabi seasons.

MATERIALS AND METHODS

Study area 

 The agricultural farm of the ICAR-Indian Agricultural 
Research Institute in New Delhi, India (28°7′ 22.8′′ N to 28° 38′ 
58.92′′ N and 77° 8′ 42.36′′ to 77°10′ 27.84′′ E) was chosen for 
the study (Fig. 1). A semiarid climate is characterized by mixed, 
hyperthermic, Typic Haplustepts soils. Rainfall averages 765.2 mm 
annually, with 82.5 percent falling between June and September. 
A total of 242 ha is cropped on the farm during the post-monsoon 
season, with wheat as the dominant crop (70 percent).

Datasets and processing

 The input data in the S-SEBI model include satellite 
datasets and meteorological data. This study relied on the Eddy 
Covariance flux tower for input and validation. The satellite images 
were selected with less than 10% cloud coverage.

Remote sensing datasets

 Landsat-8/9 level-2 data (Path 147, 146, and row 40) were 
downloaded from the United States Geological Survey (USGS) Earth 
Explorer data portal (https://eart hexplorer.usgs.gov/) with a spatial 
resolution of 30 m. Scale factors of 0.0000275 and 0.00341802 with 
additional offsets of -0.2 and 149.0 per pixel were used to correct 
the surface reflectance and temperature, respectively. The resolution 
of the Landsat image was 30 m. We had 12 high-quality images (at 
least 90% cloud-free) for 2021–2022 and 2022–2023 (Table 1).

S-SEBI model

 ET is estimated from remote sensing data by assessing the 
SEB using surface properties such as albedo, vegetation cover, and 
Ts. For instantaneous conditions, the SEB is expressed as (Eq. 1):

        
    (1)

 where Rn, H, and G are the net radiation, sensible heat 
flux, and soil heat flux, respectively, expressed in W/m2, and LE is 
the latent heat flux which is calculated as

        
    (2)

 where EF is the evaporative fraction which can be 
calculated as 

        

    (3)

 Where  and  represent the temperature of hot and cold 
edges, respectively, and Ts is the temperature of the individual pixel 
(K). The S-SEBI model, Thot and Tcold are determined based on the 
linear regression of Ts and surface albedo (α) (Eq. 4 and 5). The 
establishment of the linear regression between Ts and albedo and the 
determination of coefficients were thoroughly explained by Roerink 
et al., (2000).

        
    (4)

        
   (5)

 where α stands for surface albedo; a1, a2, b1 and  b2 are the 
regression coefficients for the dry and wet boundary, respectively. It 
is important to note that in S-SEBI, Tcold represents the cold edge 
(where H = 0), and Thot represents the hot edge where all available 
energy (Rn - G) is assumed equal to H. The hot and cold edges 
together create a trapezoidal space.

 The albedo (α) was calculated using Eq. 6. We used the 
“Olmedo” coefficient (Olmedo et al., 2016), which are 0.246, 0.146, 
0.191, 0.304, 0.105, and 0.008 for Landsat bands 2, 3, 4, 5, 6, and 7.

  (6)
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 Wband, and rband are the weight or coefficient, and reflectance 
for specified bands, respectively.

 Net radiation (Rn) is the actual rate of radiant energy 
received at the earth’s surface, divided into G, H, and LE. It is 
expressed mathematically as the difference of all incoming radiant 
fluxes to all outgoing radiant fluxes and is expressed as

 (7)

 where Rs↓ represents the incoming short-wave radiation 
(W/m2), α is the surface short-wave albedo (dimensionless), RL↓  
and  RL↑ represent the incoming and outgoing long-wave radiations 
(W/m2), and εs represents the surface emissivity (dimensionless). 

Rs↓, RL↓  and  RL↑ were computed using standard algorithms 
described by Allen et al., (2011). The emissivity (εs) was calculated 
based on albedo, NDVI, and LAI. If the NDVI <0 and albedo <0.47, 
then εs = 0.99, else if LAI >= 3, then εs = 0.98 and if LAI <3 then  
εs=0.97+(LAI*0.0033). The LAI was calculated using an empirical 
equation given by Allen et al., (2007) (Eq. 8).

                     (8)

 Where SAVI represents the soil-adjusted vegetation index 
(Huete et al., 1988) (dimensionless), which was calculated using 
the Landsat band 4 (Red) and 5 (NIR) using the following equation  

Table 1: LANDSAT-8/9 scenes with cloud-free (< 10%) dates were used for estimating ETa

LANDSAT OLI Date of acquisition (DOA) 
Rabi 2021-22 Satellite Rabi 2022-23 Satellite
November 27, 2021 (331) L8 November 22, 2022 (326) L9

December 4, 2021 (338) L8 November 30, 2022 (334) L8
December 12, 2021 (346) L9 December 07, 2022 (341) L8
December 20, 2021 (354) L8 December 24, 2022 (358) L9
January 29, 2022 (29) L9 January 16, 2022 (16) L9
February 6, 2022 (37) L8 February 10, 2022 (41) L9
February 15, 2022 (46) L8 February 18, 2022 (49) L8
March 03, 2022 (62) L8 February 26, 2022 (57) L9
March 11, 2022 (70) L9 March 6, 2022 (65) L8
March 19, 2022 (78) L8 March 14, 2022 (73) L9
March 26, 2022 (85) L8 March 30, 2022 (89) L9
April 03, 2022 (93) L9 April 7, 2022 (97) L8

N.B: In parentheses, the Day of the Year (DOY) is given, L8 and L9 represent Landsat 8, 9 respectively

GHOSH et al.

Fig. 1: Study area and land use land cover (LULC) map at ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India, during 
the rabi season
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(Eq. 9)

                     (9)

Where L is a soil correction factor (L= 0.5).

 Soil heat flux (G, W/m2) was estimated using a standard 
empirical equation proposed by Bastiaanssen et al., (1998) (Eq. 
10). 

 (10)

 Where NDVI represents the normalized difference 
vegetation index (dimensionless) which was calculated using the 
Landsat band 4 (Red) and 5 (NIR) using the following equation 

NDVI = (NIR - R)/(NIR + R ) (11)

Daily ET

 The G can be ignored for timescales of one day or 
longer (such as monthly, seasonal, and yearly). Therefore, actual 
evapotranspiration (AET, mm/day) at the daily time scale can be 
estimated using Eq. (12). 

   (12)

 Where ρw is the density of water (1000 kg/m3), 86,400*103 
converts metres per second (m/s) to millimetre per day (mm/day), 
and λ is the latent heat of vaporisation (J/kg). The calculation of λ 
was done as a function of the surface temperature using the standard 
procedure described by Allen et al., (2007).

Validation

 The model performance was evaluated by comparing 
the estimated energy balance fluxes with eddy covariance (EC) 
measurements at the experimental site. A flux tower was installed 
at the experimental site at (28.63085° N; 88.15733° E) to measure 
surface fluxes (Fig. 1). EC tower provided ET data at 30-minute 
intervals that were averaged to calculate daily ET in mm/day.

 The agreement between ET measured by EC tower and 
S-SEBI model was evaluated using correlation coefficient (r), root 
mean square error (RMSE), mean bias error (MBE), and mean 
absolute error (MAE). 

RESULTS AND DISCUSSION

Weather conditions during the study period

 The research was carried out during the rabi seasons of 
2021-22 and 2022-23. Fig. 2 depicts the meteorological conditions 
(mean temperature, net radiation, and rainfall) that prevailed during 
the study period. During the first season (November 20, 2021, to 
April 15, 2022), the mean daily temperature ranged between 9.6 and 
32 °C, net radiation ranged between 32.6 and 226.3 W m-2, and the 

total rainfall was 181.5 mm, 141.3 mm of which fell in January. 
From November 20, 2022, to April 15, 2023, the average daily 
temperature varied from 8.2 to 28.7 °C, the net radiation ranged 
from 36.3 to 231.2 W m-2, and the total rainfall was 144.5 mm, with 
105.4 mm falling in March. There were 13 and 10 rainfall events 
during the first and second seasons, respectively (Fig. 2).

Relation of land surface temperature (Ts) with air temperature, 
albedo, and mean ET

 As one of the inputs for analyzing land surface processes, 
including actual and potential evapotranspiration, land surface 
temperature (Ts) is an integral part of numerous agricultural and 
ecological studies (Cristóbal et al., 2018). We calculated the mean 
land surface temperature and ET over the study area by taking the 
average of all pixels. The mean Ts in relation to the mean ET over 
the farm is plotted in Fig. 3. Though Ts is influenced by several 
other factors, like solar energy, and crop cover, the ETmean is 
closely following the Ts except in November and April 2021 due 
to the low availability of soil moisture. The soil moisture factor is 
most noticeable when there is little or no crop cover, which can 
be well reflected by the variation in Ts (Fig. 3). It is evident that 
the higher the Ts value, the lower the ET value, as in the maturity 
stages of the crop development, low soil moisture was prominent 
in the first season. Still, rainfall increased the soil moisture in the 
second season, thus increasing ET (Fig. 3). At the initial stage, the 
mean Ts for seasons 2021-22 and 2022-23 varied from 292.4 K to 
299.5 K and 290.44 K to 300.52 K, respectively. We lack cloud-
free dates at the crop developmental stage (January) because of 
western disturbance. At the mid-season stage (Feb – 15th March), 
the average LST was 299.1 K and 303.5 K for 2021-22 and 2022-
23, respectively. The low mean Ts on 12 and 20th Dec, 2021 and 29th 
January 2022 could be attributed to low air temperature. Similarly, 
in 2022-23 there was a sudden drop in Ts on 24th December 2022, 
and 16th January 2023 might be due to low air temperature and 
net radiation compared to preceding and succeeding dates (Fig. 
3). Our study found a good correlation (R2 = 0.92) between mean 
air temperature (Tair) and Ts (Fig. 4). Goldblatt et al., (2021) also 
reported a significant correlation (r = 0.45, p < 0.001) between LST 
and mean air temperature. 

 The hot edge (Thot) and cold edge (Tcold) were calculated 
from the trapezoidal space plot between albedo and Ts, as suggested 
by Roerink et al., (2000), for all satellite overpass dates. A 
representative trapezoidal space plot for estimating Thot and Tcold as 
a linear function of surface albedo for the study region is shown in 
Fig. 5. The slope and intercept of the hot and cold edges, as well as 
the coefficient of determination (R2) of the regression line, for all 
satellite overpass dates, are listed in Table 2.

Spatially and seasonally distributed ET

 ET products can be more efficiently retrieved at the farm 
scale using remote sensing techniques that are spatially consistent 
and temporally continuous. This methodology has the advantage 
of providing estimates across the entire territory, capturing minor 
spatial variations between pixels that allow one to assess water 
use, irrigation, and groundwater recharge efficiency (Khan et al., 
2020). The model performance at a spatiotemporal scale on a pixel-

Estimation of actual evapotranspiration
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Fig. 2: Daily weather [mean temperature (Tmean), net radiation (Rn24), and rainfall] over the crop growing season (a) Rabi 2021-22, (b)  
2022-23

Fig. 3: Variation of mean land surface temperature and mean ET over the IARI farm on satellite overpass dates.

Fig. 4:  Relation between mean air temperature (Tair) and mean land 
surface temperature (Ts)

Fig. 5: Relationship between albedo and land surface temperature 
(Date: 07.12.2022), the red line represents the hot edge, and 
the blue line represents the cold edge.



370 September 2023

Table 2: Slope and intercept of hot and cold edge and R2

Date Thot R2 Tcold R2

Slope Intercept Slope Intercept
27-11-2021 -7.581 302.847 0.039 17.743 294.804 0.604
04-12-2021 -21.129 305.838 0.748 23.253 292.761 0.576
12-12-2021 -39.656 300.815 0.707 21.012 286.751 0.869
20-12-2021 -35.656 301.534 0.812 24.446 286.459 0.639
29-01-2022 -7.991 295.418 0.081 27.139 286.643 0.632
06-02-2022 -6.427 297.503 0.022 31.753 287.197 0.615
15-02-2022 -8.242 303.100 0.035 26.581 292.818 0.588
03-03-2022 -18-930 308.970 0.182 23.151 296.569 0.836
11-03-2022 -12.503 310.953 0.064 38.389 295.889 0.857
19-03-2022 11.341 313.417 0.065 29.717 303.899 0.741
26-03-2022 10.660 314.820 0.076 54.834 299.561 0.879
03-04-2022 30.892 316.016 0.580 99.855 297.621 0.778
22-11-2022 -8.861 305.058 0.042 15.795 295.286 0.659
30-11-2022 -19.831 304.104 0.205 30.096 291.435 0.517
07-12-2022 -30.125 304.044 0.702 33.532 288.963 0.604
24-12-2022 -18.391 295.304 0.411 35.991 282.852 0.788
16-01-2022 -36.024 300.737 0.811 33.290 284.475 0.852
10-02-2023 -21.101 306.506 0.383 32.953 292.843 0.873
18-02-2023 -26.114 308.201 0.574 36.659 293.359 0.862
26-02-2023 -11.394 306.570 0.145 39.244 293.913 0.910
06-03-2023 -9.979 311.145 0.202 38.899 297.204 0.899
14-03-2023 4.137 312.446 0.011 47.897 298.305 0748
30-03-2023 -4.299 309.078 0.045 16.232 302.167 0.489
07-04-2023 17.635 311.994 0.252 28.693 303.223 0.869

by-pixel basis over heterogeneous land cover was assessed through 
the S-SEBI generated maps. Fig. 6 depicts the spatial pattern of 
daily ET obtained from the S-SEBI method using Landsat 8/9 
image over the IARI farm during the rabi seasons of 2021-22 and 
2022-23. Overall, the S-SEBI model can capture the spatiotemporal 
variability of the atmosphere’s evaporative demand over the entire 
study area. In general, the spatiotemporal patterns of ET can 
be highly variable due to the heterogeneity of land surface and 
environmental factors that control ET (Sharma et al., 2015). There 
was a significant spatiotemporal variation in ET in the study area due 
to the variability in sowing times, cropping systems, and agronomic 
practices. The model could distinguish the ET over dryland crops 
and well-irrigated wheat fields over the IARI farm (Fig. 1, 6). The 
model estimated mean ET over the farm at the initial crop growing 
stage (Nov-Dec) varied between 0.73 (December 4, 2021) and 1.92 
(December 20, 2021) mm/day for the first season and the second 
season it ranged from 0.89 (Nov 30, .2022) to 1.48 (Nov 22, 2021) 
mm/day (Fig. 6). In the mid-season stage (February-mid March), 
ET values ranged from 2.88 to 4.79 mm/day and 2.7 to 4.62 mm/
day for the first and second seasons, respectively. However, in 
April, the mean ET was 3.27 mm/day for the first season, while it 
was relatively high (3.92 mm/day) for the second season due to the 
high soil moisture content from heavy rainfall. With the higher air 
temperature and abundant solar radiation during mid-season (Feb-
Mar), the  from a well-watered surface due to the greater availability 

of energy (French et al., 2020).

Table 3: Season-wise and overall model performance matrices

Statistical Parameter 2021-22 2022-23 Overall
r 0.905 0.904 0.894
MBE (mm/day) 0.595 0.2 0.398
MAE (mm/day) 0.821 0.499 0.66
RMSE (mm/day) 0.975 0.558 0.794

Comparison of S-SEBI estimated and eddy covariance measured 
ET 

 The various statistical parameters were considered for the 
quantitative evaluation of model performance. During 2021-22, the 
correlation coefficient (r) was 0.905, the MBE was 0.595 mm/day, 
the MAE was 0.821, and the RMSE was 0.975 mm/day. In 2022-
23, the correlation coefficient (r) was 0.904, and the MBE, MAE, 
and RMSE were 0.2, 0.499, and 0.558 mm/day, respectively. (Fig. 
7, Table 3). In the study, it has been found that the model tends to 
overestimate at higher ET values and underestimate at lower ET 
values (Fig. 7). We observed an overall correlation coefficient of 
0.894 and an RMSE of 0.794 mm/day for model-estimated ET. 
Danodia et al., (2017) also found aa close relationship between 
S-SEBI derived and scintillometer-observed evaporative fractions 
with a correlation coefficient of 0.85. Sobrino et al., (2021) reported 
that an average RMSE for daily ET of 0.86 mm/day was obtained 

Estimation of actual evapotranspiration
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Fig. 6: Spatial variation of ET over the IARI farm (a) Rabi 2021-22, (b) Rabi 2022-23 

GHOSH et al.
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Fig. 7: Relationship between the estimated ET and the eddy flux ET for both the season and overall

 

Fig. 8:  Observed (eddy covariance flux tower ET), S-SEBI model 
predicted ET, difference, and fractional vegetation cover 
(FVC) on satellite overpass dates for both crop growing 
seasons (a) Rabi 2021-22, (b) Rabi 2022-23

from the S-SEBI model for Landsat 8 data. At the initial stage, the 
model estimated ET ranged from 0.69 to 1.94 and 0.527 to 1.09 mm/
day for the first and second seasons, respectively. At the mid-season 
stage, ET ranged from 2.19 to 4.87 mm/day for the first season and 
from 2.47 to 3.6 mm/day for the second season. Mukherjee et al., 
(2021) estimated actual ET using Operational Simplified Surface 
Energy Balance and found that the ET ranged from 0.81 to 3.26 
mm/day during the initial stage and 1.83 to 4.02 mm/day at the mid-
season. At the initial crop developmental stage, the model tends to 
underestimate by an average of 0.48 mm/day and 0.76 mm/day for 
the first and second seasons, respectively. Moreover, compared to 
the initial crop growth stage, the development stages showed higher 
ET (Fig. 8). As a result of a smaller canopy cover of the crop during 
its initial growth stage, there may be less solar radiation captured 
by the crop, leading to smaller sensible and latent heat fluxes than 
during the development stages (Kumar et al., 2019). An average 
0.73 mm/day overestimation of daily ET by S-SEBI (Fig. 7) implies 

that the Ts vs. albedo relationship utilized in the S-SEBI model to 
determine the wet edge and dry edge may not be well represented 
over the farm. A similar overestimation of S-SEBI-estimated ET 
(16%) was observed by Wagle et al. (2017) in Oklahoma. 

CONCLUSIONS

 Our study analyzed the operational ET data obtained 
through the S-SEBI model from Landsat 8/9 data during the post-
monsoon periods of 2021-22 and 2022-23. After extensive analysis, 
we found that the S-SEBI model has an overall correlation coefficient 
of 0.89 and an RMSE of 0.79 mm/day for ET. Based on these results, 
we highly recommend the S-SEBI model as a simple yet effective 
tool for mapping daily ET over agricultural sites. This data can be 
used for remote sensing-based crop irrigation scheduling, providing 
valuable insights for farmers.
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