
Agricultural production is primarily dependent on the 
effective utilization of the available water resources, especially 
under drought-prone, dry, sub-humid and semi-arid climatic regions 
(Sharma et al., 2021). Measurement or accurate estimation of 
evaporation losses plays a significant role in reservoir management, 
development of irrigation and drinking water supply systems 
particularly in drought-prone areas towards improving agricultural 
productivity and efficient water resource management, (Kim et at., 
2015). Generally, there are two main approaches  viz. direct methods 
and indirect methods. Direct methods include the class A pan, class 
U pan, and lysimeter. However, the class A pan evaporation is widely 
used as compare to other methods (Bicalho et al., 2016: Kingra et 
al., 2002). Indirect techniques comprise evaporation determination 
using meteorological information and physical conceptslike volume 

and energy conservation that require precise adjustment based on 
climate. (Abed et al., 2022, Chowdhury et al., 2010). 

Considering the limitations associated with both 
measurement and empirical approaches for evaporation estimation, 
use of soft computing techniques is being applied during last decades 
for estimating stochastic different hydrological and climatological 
parameters (Terzi, 2013; Majhi et al., 2020). It was revelead from 
literature that the meteorological data are only used to develop 
predictive models for hydrological and meteorological parameters. 
However, in time series analysis, meteorological parameters are 
stochastic in nature and repeated with static time-series such as 
Julian date. So, use of static time series as input variables might assist 
the neural network to learn the trend of meteorological parameters 
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Estimation of pan evaporation (Epan) can be useful in judicious irrigation scheduling for enhancing agricultural water productivity. The aim of  
present study was to assess the efficacy of state-of-the-art LSTM and ANN for daily (Epan) estimation using meteorological data. Besides this, 
the effect of static time-series (Julian date) as additional input variable was investigated on performance of soft-computing techniques. For this 
purpose,the models were trained, tested and validated with eight meteorological variables of 37 years by using preceding 1-, 3- and 5- days’ 
information. Data were partitioned into three groups as training (60%), testing (20%), and validation (20%) components. It was observed 
that the models performed well (best) with preceding 5-days meteorological information followed by 3-days and 1-day. However, all LSTMs 
simulated peak value of (Epan) was more accurate as compared to lower values. Meteorological data with julian date improved the performance 
of LSTMs (0.75<NSE1; PBias<10; KGE 0.75). The ANN trained using only meteorological data (preceding 5-days information) had better 
performance error statistics among all other ANNs and LSTMs with minimum MAE (0.68 to 0.86),  RMSE (0.93 to 1.22),  PBias (-0.73 to 2.44) 
and maximum NSE (0.83 to 0.84) and KGE (0.89 to 0.92). Overall, it was inferred that the forecasting of meteorological parameters using a few 
days preceding information along with Julian date as the time series variables resulted in better estimation of (Epan) for the study region.
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to improve accuracy in prediction of evaporation rates. Therefore, 
present study was undertaken to evaluate the performance of soft 
computing techniques viz. ANN and LSTM for (Epan) estimation 
using preceding 1-, 3-, and 5-days  meteorological data. Besides 
this, the effect of static time-series Julian date (JD) as input variables 
were attempted to investigat the performance of ANN and LSTM 
models for estimation of daily pan evaporation.

MATERIALS AND METHODS

 The daily meteorological data (maximum temperature, 
minimum temperature, morning relative humiditie, evening relative 
humidity,  wind velocities, sunshine hours and  rainfall) from 1984 
to 2021 of IARI research farm, New Delhi, was collected from the 
Division of Agricultural Physics, ICAR-IARI, New Delhi. Initially, 
the data set contained some missing values. Thus, preprocessing of 
data was carried out for the accuracy of the model. The missing 
values were  replaced with the mean values. Data scaling, 
normalization and transformation of data into a standardized form 
were undertaken. Normalization of data assisted to scale the data 
pertaining to an attribute so that it would be restricted to a smaller 
range between 0 to 1 or -1 to 1. The min-max normalization method 
was used using the formula as shown in Equation 1. 

                                                                    (1)

Where, Ynormalized represents normalized data, Y is the actual value of 
data to be normalized, Ymax represents maximum value of data,  Ymin 

represents minimum value of data, respectively.

Artificial neural network (ANN) architecture

ANN architecture consists of an input layer, intermediate 
layers (hidden layer) and an output layer. The hidden layers may 
be one or more depending on the data type and the model error 
statistics. Also, the number of nodes in the hidden layer plays a 
significant role in ANN model performance (Naresh et al., 2023; 
Kumar et al., 2022). There are no fixed rules for developing an ANN 
and a general framework was adopted based on previous successful 
applications in hydrology and agricultural water management.  
ANN trained with three numbers of hidden layers with a single 
output node was chosen as the criterion for the selection of optimal 
architecture. The general architecture of the ANN for estimation of 
pan evaporation is shown in Fig. 1.

Fig. 1: Artificial neural network architecture 

Each neuron has a number of input arcs connected (Fig. 1), u1 to un, 
and associated with each i, there is a weight (Wij), which representsa 
factor by which a value passing to the neuron is multiplied. A neuron 
sums the values of all inputs (Sj) as:

      (2)

 In Fig. 1, Wu corresponds to the summation of weights 
Wij. The term b is called bias. Finally, an activation function isn 
applied to  to provide the final output from the neuron. The sigmoid 
function transform the continuous real number into a range of (0, 1), 
so that the input value of the next layer is within a fixed range and 
the weight is more stable (Wij).The sigmoid function (φ) is given by

                                           (3)

where,  Sj is the value of the neuron at jth location.

LSTM model architecture 

 A specific architecture of deep Recurrent Neural Network 
(RNN) is Long-Short Term Memory (LSTM) network, which was 
an intended design for modelling temporal sequences (Kumar et al., 
2023). The basic structure of LSTM is known as a memory cell for 
remembering past event and predict future event using time-series 
datasets. A typical LSTM (Fig. 2) composed of two states which 
were the basic building blocks of a network, i.e., cell state (Ct)  and 
hidden state (ht). Similarly, it has three gates such as ‘forget’ gate 
(ft)- removing unwanted information from , ct ‘input’ gate (it)- adding 
new useful information to ct in every time steps and ‘output’ gate ht- 
updating ct  in each time step by incorporating information from the 
updated cell. These gates allow the LSTM to forget or memorize 
newly aquired information to the memory cell i.e. update ct and ht in 
every time step and the updated values of these two states are used 
to the next time step prediction (Majhi et al., 2020). Collaborative 
performance of these gates enabled LSTM to work on time series 
data effectively.

In this study, ANN and LSTM were used as predictive 
model for one day ahead pan evaporation for two input senseiors 
as meteorological data and, meteorological data with Julian days 
ininput variables. Both models trained with three different input 
variables with preceding 1-day (LSTM-1 &ANN-1), 3-days (LSTM-
3 & ANN-3), and 5-days (LSTM-5 & ANN-5), meteorological 
information. The available meteorological data were partitioned to 
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three groups: training (60%), testing (20%), and validation (20%). 

Model evaluation statistics

Statistical criteria, such as the mean absolute error (MAE), 
root mean square error (RMSE), Nash-Sutcliffe Efficiency (NSE), 
Kling–Gupta efficiency (KGE) and percent bias (PBias) were used 
as the prediction error statistics to ascertain the performance of the 
developed models.

where, σest and σobs are the standard deviation of the estimated and 
observed Epan , respectively. 

                 (8)

where n is the number of observations,  and are 
observed and predicted value, respectively,  and  are the 
average values of observed and predicted data, respectively.

To select the optimum model input variables, the following 
criteria were considered to adjudge a model as excellent (0.75<NSE1; 
PBias<10; KGE 0.75), good (0.65<NSE0.75; PBias<15; 0.5≤ KGE 
< 0.75) and satisfactory (0.5<NSE0.65; PBias<25; 0.0 ≤ KGE < 0.5) 
(Commeh et al., 2022; Thiemig et al., 2013). 

RESULTS AND DISCUSSION

Performances of ANN and LSTM Models

Daily pan evaporation (Epan) was estimated using 
preceding meteorological information by soft computing techniques 
of ANN and LSTM. Time-series ofthe observed and estimated 
Epan by using only meteorological data of preceding 1-, 3- and 
5-daysis shown in Fig. 3. It was observed from Fig. 3 that both 
models simulated the trend of pan evaporation well for all three 
input variables during training, testing and validationprocesses. 
The ANN model indicated more stable and better performance than 
LSTM model for Epan estimation. In addition, it was found that the 
ANN models were able to capture the peak, intermediate as well as 
lowervalues while LSTM model had relatively poor performances 
in estimating lower Epan for all input scenarios (Fig. 3). Nonetheless, 
LSTM model trained with preceding 5- days meteorological data 
simulated the peak evaporation better than the other LSTM and ANN 
models (Fig. 3c). From the performance error statistics of LSTM 
and ANN models for Epan estimation using meteorological data are 
presented in Tables 1 and 2, respectively. It was found that the MAEs 
(mm) beween observed and estimated Epan were 0.71 to 0.95, 0.68 
to 0.90 and 0.68 to 0.86 for ANN-1, ANN-3 and ANN-5, while 1.39 
to 1.58, 0.98 to 1.20 and 1.12 to 1.27 for LSTM-1, LSTM-3 and 

LSTM-5, respectively. Besides this, the RMSEs were 0.98 to 1.36, 
0.94 to 1.30 and 0.68 to 0.86 for ANN-1, ANN-3 and ANN-5, while 
1.65 to 1.89, 1.18 to 1.53 and 0.93 to 1.22 for LSTM-1, LSTM-3 and 
LSTM-5, respectively. On the other hand, NSE (0.79 to 0.85) and 
KGE (0.87 to 0.92) were also higher for ANN than LSTM models 
(NSE: 0.42 to 0.78; KGE: 0.75 to 0.86). Moreover, the PBias of 
LSTM models (17.7 to 31.3) higher than ANN models  (-7.7 to 2.4). 
Overall this indicated that the MAE<0.95 and RMSE<1.36 for ANN 
models were lower as compared to LSTM models (MAE>0.98 
and RMSE>1.18) for all scenarios. Nonetheless, the ANN models 
exibited as excellent models (0.75<NSE1; PBias<10; KGE 0.75), 
while LSTM-1 exibited as satisfactory (0.5<NSE0.65; PBias<25; 
0.0 ≤ KGE < 0.5), and for  LSTM-3 and LSTMA-5 exibited as good 
(0.65<NSE0.75; PBias<15; 0.5≤ KGE < 0.75). LSTM models also 
showed high variability in performance error indictors, whereas the 
ANN models provided low variability in errors statistics. Moreover, 
the ANN models were observed to have the bestpredictive ability 
for daily Epan estimating for not only the lower values but also the 
peak values.

Form the performance error statistics Table 1 and 2, 
both LSTM and ANN model trained with using 3- or 5-days 
meteorological data exhibited better performance error statistics than 
models trained with only one day preceding meteorological data. 
It can be inferred that the time series estimation of meteorological 
parameters depends on preceding meteorological information.It 
was also observed that the LSTM model trained with preceding 3 
days information performed at par with that of 5 days but better 
than preceding 1-day data (Table 1). Besides this, ANN models 
performance error statistics better trained with preceding 5-days 
meteorological data followed by 3- days and 1- day. 

Effect of time-series input along with meteorological data on 
models’ performance

An attempt was made to investigate the effect of static 
time-series (Julian date) as input variables along with meteorological 
data. Fig. 4 shows time-series of the observed and estimated Epan 
of LSTM and ANN models by using meteorological data along 
with Julian date for preceding 1-, 3- and 5- days information. 
The performance of LSTM models was improved for daily Epan 
simulation when static time series julian date added as input 
variables. This improvement was observed specially for LSTM 
models trained with preceding 3- and 5-days meteorological data 
(Fig. 4). Although LSTM overestimated the lower values, ANN 
models’ performance was similar using only meteorological data to 
simulate the peak and lower values precisely. 

Model performance error statistics indicated that the MAE 
(0.81 to 1.41), RMSE (0.84 to 1.68), PBias (5.15 to 15.07) were 
reduced and NSE (0.68 to 0.83) and KGE (0.76-0.90) increased 
for LSTMs trained with julian date as compared to use of only 
meteorological data (Table 1 and 3). However, ANNs performed 
well to simulate the peak and lower values (Fig. 4) as that of 
models trained with only meteorological data. Besides this, model 
performance error statistics also indicated that the performance was 
affected by using static time-series variables (Julian date) as input 
variables with meteorological data (Table 2 and 4). The MAE and 
RMSE  were 0.66 to 0.89,  and 0.92 to 1.29, respectively which 

Evaluation of soft-computing techniques for pan evaporation estimation
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Fig. 3: Time series for observed and estimated Epan of LSTM & ANN using a) 1-day, b) 3-days and c) 5- days preceding meteorological 
information 

Table 1: Performance error statistics of LSTM using only meteorological data 

LSTM models MAE RMSE NSE KGE PBias

LSTM-1 Training 1.58 1.89 0.58 0.75 20.01
Testing 1.39 1.66 0.64 0.79 17.52
Validation 1.46 1.65 0.42 0.75 23.03

LSTM-3 Training 1.20 1.53 0.72 0.81 12.28
Testing 1.02 1.29 0.78 0.86 9.96
Validation 0.98 1.18 0.70 0.82 14.62

LSTM-5 Training 1.27 1.58 0.71 0.80 14.62
Testing 1.12 1.39 0.75 0.83 12.80
Validation 1.13 1.31 0.63 0.80 17.73

was higher than models trained with only meteorological data. Also, 
NSE (0.79 to 0.84) and KGE (0.85 to 0.92) values were lower than 
models using only meteorological data.

It was observed that the LSTM and ANN have their own 
potential for time-series forecasting. The LSTM simulated peak 
pan evaporation precisely whereas overestimated for lower values. 

KUMAR et al.
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Table 2: Performance error statistics of ANNs using only meteorological data 

ANN models MAE RMSE NSE KGE PBias
ANN-1 Training 0.95 1.36 0.80 0.88 -3.52

Testing 0.90 1.29 0.79 0.87 -7.66
Validation 0.71 0.98 0.81 0.90 -4.22

ANN-3 Training 0.90 1.30 0.83 0.91 2.14

Testing 0.82 1.16 0.85 0.92 -0.30
Validation 0.68 0.94 0.85 0.90 2.15

ANN-5 Training 0.86 1.22 0.83 0.89 1.55
Testing 0.80 1.14 0.83 0.90 -0.73
Validation 0.68 0.93 0.84 0.92 2.44

Fig. 4: Time series for observed and estimated Epan of LSTM & ANN using a) 1-day, b) 3-days and c) 5 days precedingmeteorological data with 
Julian date

LSTMs trained with preceding 3- and 5-days meteorological data 
performed better than the preceding 1-day information (Figs. 3 and 
4). However, LSTM with preceding 3 days information simulated 

the peak and lower values over 5 days (Figs. 3 and 4) more accurately 
than using the one day data. While, performance error statistics of 
LSTM models trained with preceding 5-days meteorological and 

Evaluation of soft-computing techniques for pan evaporation estimation



61Vol. 26 No. 1

julian date was observed to be the best (0.75<NSE1; PBias<10; 
KGE 0.75) with MAE<1.41 mm and RMSE<1.39 mm as compared 
to other LSTM models (Tables 1 and 3).Moreover, ANNs performed 
better than the LSTM to simulate peak as well lower pan evaporation 
with marginal underestimated and overestimated the peak and lower 
values for all seneraios (Figs. 3 and 4). The performance error 
ststitics of ANNs using preceding 1-, 3- and 5- days’ meteorological 
information were in line with each others. However, ANN with 
preceding 5- days information had a little edge over 3- days 
followed by 1-day preceding information (Tables 2 and 4). The use 
of static time-series variables in input along with meteorological 
parameters affected the simulation as well performance error 
statistics of LSTMs whereas the performance of ANNs was stable 
(Figs. 3 and 4;  Table 1 to 4). Further, the use of Julian date in input 
along with preceding 5-days information improved the LSTMs 
performance (0.75<NSE1; PBias<10; KGE 0.75). Besides this, 
ANN’s performance did not improve much by using julian date in 
input variables. Thus, the ANN trained with using only preceding 
5- days meteorological data performed better which can be used for 
daily Epan estimation for irrigation scheduling and efficient water 
resource management.

Overall, the performance error statistics of LSTMs and 
ANNs model evaluated for different scenearios indicated that the 
LSTM-3 estimated Epan better than LSTM-5 followed by LSTM-1 
when the model trained with only metreorological data, while the 
performance of  LSTM-5 was better than LSTM-3 and LSTM-1, by 

using the metreorological data and Julian date. On the other hand, 
performance of ANN-5 was better than ANN-3 followed by ANN-1 
for all scenarios. Besides this, the use of Julian date as input variable 
improved the performance of LSTMs. The improve in performance 
by using Julian date as input  may be due to representing the entire 
year leading to adequate learning of the soft computing tools. 
Therefore, it can be concluded that estimation of meteorological 
parameters requires a few days preceding information for better 
testing and learning of these tools. So the use of static time series 
variable as julian date could improve the predictability of soft 
computing techniques. 

CONCLUSION

In the present study evaluated the performance of 
soft computing techniques viz. LSTM and ANN for daily pan 
evaporation estimation, which were trained with 1-, 3- and 5- days 
preceding meteorologicaldata and, along with static time series 
(Julian date) as input variable. It was LSTMs simulated peak pan 
evaporation precisely with observed values but overestimated 
lower values. While, ANNs simulated peak as well lower pan 
evaporation values with marginal under and over-estimated with 
preceding 5- days meteorological information followed by 3- days 
and 1- day, respectivelt. The models trained with meteorological 
data and julian date improve the performance error statistics of 
LSTMs, however the performance error statistics of ANNs like the 
used only meteorological data. The ANN trained with using only 
meteorological data (5 days preceding information) had better 
performance error statistics among all others ANNs and LSTMs 
with minimum MAE, RMSE, PBias; and maximum NSE and KGE. 
Therefore, the results of the proposed ANN-5 model can be used for  
Epan estimation. 
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Table 3: Performance error statistics of LSTMs using meteorological 
data with Julian dates

LSTM models MAE RMSE NSE KGE PBIAS

LSTM-1 Training 1.27 1.68 0.73 0.82 15.07
Testing 1.07 1.45 0.78 0.84 12.51
Validation 1.17 1.48 0.68 0.76 18.52

LSTM-3 Training 1.08 1.47 0.79 0.86 11.63
Testing 0.90 1.24 0.83 0.88 8.55
Validation 0.87 1.15 0.79 0.83 12.50

LSTM-5 Training 0.99 1.39 0.81 0.88 8.16
Testing 1.41 0.84 0.85 0.90 5.14
Validation 0.81 1.11 0.82 0.83 9.94

Table 4: Performance error statistics of ANNs using meteorological 
data with Julian dates

ANN models MAE RMSE NSE KGE PBIAS

ANN-1 Training 0.89 1.29 0.80 0.85 -2.95
Testing 0.88 1.25 0.79 0.86 -8.02
Validation 0.70 0.94 0.83 0.91 -2.60

ANN-3 Training 0.86 1.23 0.84 0.92 0.01
Testing 0.84 1.21 0.83 0.91 -1.86
Validation 0.66 0.92 0.84 0.92 -0.51

ANN-5 Training 0.88 1.25 0.82 0.87 -6.12
Testing 0.87 1.24 0.79 0.86 -8.15
Validation 0.66 0.92 0.83 0.89 -5.53

KUMAR et al.



62 March 2024

jurisdictional claims in published maps and institutional affiliations.

REFERENCES

Abed, M., Imteaz, M. A., Ahmed, A. N. and Huang, Y.F. (2022). 
Modelling monthly pan evaporation utilising Random 
Forest and deep learning algorithms. Sci. Rep., 12(1): 
13132.

Bicalho, K.V., Araujo, L.C., Cui, Y.J. and Dantas, B.T. (2016). 
Evaluation of empirical methods for estimating potential 
evaporation values in northeast France. In E3S Web of 
Conferences, EDP Sciences, 9:16005.

Chowdhury, S., Nanda, M.K., Saha, G. and Deka, N. (2010). 
Evaluation of different methods for evapotranspiration 
estimation using automatic weather station data. J. 
Agrometeorol.,  12(1): 85-88. https://doi.org/10.54386/
jam.v12i1.1277

Commeh, M.K., Agyei-Agyemang, A., Tawiah, P.O. and Asaaga, 
B.A. (2022). CFD analysis of a flat bottom institutional 
cookstove. Sci. Afr., 16: e01117.

Kim, S., Shiri, J., Singh, V.P., Kisi, O. and Landeras, G. (2015). 
Predicting daily pan evaporation by soft computing 
models with limited climatic data. Hydrol. Sci. J., 60(6): 
1120-1136. 

Kingra, P. K., Kaur, P., and Hundal, S. S. (2002). Estimation of PET by 
various methods and its relationship with mesh covered 
pan evaporation at Ludhiana. J. Agrometeorol., 4(2): 
143–148. https://doi.org/10.54386/jam.v4i2.455 

Kumar, A., Deo, M.M., Jeet, P., Kumari, A. and Prakash, O. (2022). 
Daily rainfall prediction for Bihar using artificial 
neural networks: Prediction of rainfall using ANN. J. 
AgriSearch., 9(4): 320-325.

Kumar, A., Sarangi, A., Singh, D.K., Khanna, M. and Singh, 
M. (2023). Prediction of relative humidity using soft 
computing techniques. J. Soil Water Conserv., 22(3): 
280-286.

Majhi, B., Naidu, D., Mishra, A.P. and Satapathy, S.C. 
(2020). Improved prediction of daily pan evaporation 
using Deep-LSTM model. Neural. Comput. 
Appl., 32:7823-7838. doi.org/10.1007/s00521-019-
04127-7

Naresh, R., Kumar, M., Kumar, S., Singh, K. and Sharma, P. 
(2023). Estimation of reference evapotranspiration using 
artificial neural network models for semi-arid region of 
Haryana. J. Agrometeorol., 25(1): 145-150. https://doi.
org/10.54386/jam.v25i1.1914

Sharma, V., Singh, P. K., Bhakar, S. R., Yadav, K. K., Lakhawat, 
S. S. and Singh, M. (2021). Pan evaporation and 
sensor based approaches of irrigation scheduling for 
crop water requirement, growth and yield of okra. J. 
Agrometeorol., 23(4): 389-395. https://doi.org/10.54386/
jam.v23i4.142.

Terzi, O. (2013). Daily pan evaporation estimation using gene 
expression programming and adaptive neural-based 
fuzzy inference system. Neural Comput. Appl., 23: 
1035-1044. doi.org/10.1007/s0052 1-012-1027-x

Thiemig, V., Rojas, R., Zambrano-Bigiarini, M. and De-Roo, 
A. (2013). Hydrological evaluation of satellite-based 
rainfall estimates over the Volta and Baro-Akobo 
Basin. J. Hydrol., 499: 324-338.

Evaluation of soft-computing techniques for pan evaporation estimation


