
 The global climate is changing at an alarming rate due to 
the increasing emission of greenhouse gases (GHGs) such as carbon 
dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the pre-
industrial era (1750 AD), the atmospheric CO2 concentration was 
around 280 ppm; today, it is over 410 ppm (IPCC, 2021), mainly 
due to widespread anthropogenic activity, and it is anticipated to 
exceed 550 ppm by 2050 and 700 ppm by 2100 (Kumar et al., 
2019). According to IPCC 6th assessment report, the temperature 
would likely rise by 1.5-5.0°C in mid of the scenario spectrum and 
by 3°C in 2100 (IPCC 2021). Warming and elevated CO2 levels 
are having negative impacts on agricultural ecosystems, changing 
plant growth and food grain production in tropical and subtropical 
countries, including India (Chakrabarti et al., 2020; Guo et al., 2022; 
Singh, 2023). Significant evidence suggests that elevated CO2 will 
stimulate photosynthesis rate and increase biomass production and 
yield, especially in C3 crops (Saxena and Kumar, 2014; Brito et al., 
2020; Lenka et al., 2021; Zhu et al., 2022). But rise in temperature 
along with increased CO2 level will have certain harmful effect on 

crop plants. According to earlier studies (Cai et al., 2016; Wang et 
al., 2016), warming reduced photosynthesis resulting in a decrease 
in crop biomass. Rise in temperature also shortens the crop growth 
duration leading to decreased productivity of the crop (Raj et al., 
2016; Das et al., 2020). 

 Rice (Oryza sativa L.) is the second-most significant 
staple food crop in the world (Pathak et al., 2018). In India, rice 
occupies an area of nearly 43.8 million ha, with a total production of 
177.6 million tonnes and productivity of 4,057 kg ha−1 (FAOSTAT, 
2021). The primary effects of rising CO2 on crops include an 
increase in photosynthetic rate, an improvement in water and light 
use efficiency, and a decrease in transpiration rate and stomatal 
conductance (Dey et al., 2016). Although elevated CO2 increases 
photosynthetic rate but it directly reduced leaf stomatal conductance 
by around 50%, lowering water losses and improving water use 
efficiency (WUE) (Ainsworth and Rogers, 2007; Pazzaglia et al., 
2016).Water use efficiency (WUE), or the amount of carbon gained 
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Greenhouse gas (GHG) emissions from anthropogenic activities are the most significant drivers of climate change, which has both direct and 
indirect effects on crop production. The study was conducted during the kharif season for two years inside the Open Top Chamber (OTC) at 
the Genetic-H field of ICAR-Indian Agriculture Research Institute (IARI) to quantify the effect of elevated CO2 and temperature on water use 
efficiency of two rice varieties viz. Pusa Basmati 1509 and Nagina 22. There were two different CO2 concentrations i.e. ambient (410 ppm) and 
elevated (550 ± 25 ppm) and also two of rice different temperature levels i.e. ambient and elevated (+2.5-2.9°C). Results suggested that warming 
caused more accumulated GDD in rice, which negatively affected the duration of both the varieties. In elevated CO2 plus high temperature 
interaction, net photosynthesis rate was more than that of control while stomatal conductance and transpiration rate got reduced. Hence the study 
showed that, co-elevation of CO2 and temperature improved WUE (both instantaneous and intrinsic), of the crop. 
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per unit of water consumed, has emerged as a crucial indicator of 
how effectively water resources are utilized. Water Use Efficiency is 
the ratio of the amount of carbon assimilated through photosynthesis 
to the water lost via transpiration. This is also commonly known 
as instantaneous WUE (WUEinst) (Farquhar and Richards, 1984). 
At the leaf level, water usage is regulated by the available energy 
reaching leaf, vapour pressure deficit, and aerodynamic exchange 
and also controlled by stomatal conductance of the plant (Hatfield 
and Dold, 2019). The intrinsic WUE (WUEintr) is the ratio of net 
CO2 assimilation through photosynthesis to stomatal conductance 
(Osmond et al., 1980). It has been suggested that breeding for high 
WUE by focusing on intrinsic WUE is possible (Condon et al., 
2004).

 According to Qiao et al., (2010), elevated CO2 enhanced 
water use efficiency in C3 crops. However, the amount of stomatal 
conductance that decreases in response to elevated CO2 depends 
on the plant’s condition, including its growth stage, as well as 
external factors like light and temperature (Bunce, 2004). There is 
currently relatively little evidence available on the interactive effect 
of elevated CO2 and temperature rise on rice stomatal conductance, 
which might offer fresh insights into prospective agricultural 
interventions to decrease water use in the future.

MATERIALS AND METHODS

Experimental details

 The study was conducted for two consecutive years (2019 
and 2020) in kharif season (July to October) inside the Open Top 
Chamber (OTC) at the Genetic-H field of ICAR-Indian Agriculture 
Research Institute (IARI), New Delhi. The site is located at 28°37ʹ 
N latitude and 77°11ʹ E longitude at an altitude of 228.6 m above 
the mean sea level. The climate of the area is sub-tropical, semi-arid 
with hot summer and cool winter.

 The OTCs were maintained at two different CO2 
concentrations viz. ambient (410 ppm) and elevated (550 ± 25 ppm) 
and two levels of temperature i.e., ambient temperature and elevated 
temperature(+2.5-2.9°C). Elevated temperature was maintained by 
partially covering the upper portion of the OTCs with PVC shelter. 
Inside the OTCs the elevated CO2 concentrations were maintained 
using a high pressurized CO2 cylinders (of commercial grade 100% 
CO2 of 30 kg capacity). Seedlings of two rice varieties namely Pusa 
basmati 1509 and Nagina 22 were transplanted in the crates inside 
the OTCs.  Recommended dose of fertilizer i.e., 120-60-60 (N-P2O5-
K2O) (kgha-1) was applied in rice crop. 

Physiological and growth parameters

 The number of days taken by each variety to reach the 
physiological maturity in each treatment were recorded through 
visual observations in the field. A portable photosynthesis system, 
InfraRed Gas Analyzer (IRGA Li-6400XT, Li-COR, USA) was used 
to record the gas exchange parameters viz. photosynthesis rate (Pn), 
stomatal conductance (gs), transpiration rate (E) at the flowering 
stage of the crop. Leaf samples were collected at flowering stage. 
Leaf area was measured using LI-3100C Area Meter (LI-COR, 
Lincoln, NE). Observations on yield parameters were recorded after 

harvesting of plants.

 Crop instantaneous WUE (WUEinst) and intrinsic WUE 
(WUEintr) were calculated from the above observations. The 
instantaneous WUE (WUEinst) was calculated as the ratio of net 
photosynthesis (Pn) to the transpiration rate (E) and the intrinsic 
WUE (WUEintr) was calculated as the ratio of net photosynthesis 
(Pn) to the stomatal conductance (gs).

Computation of growing degree days (GDD)

 Growing degree days (GDD) is one of agrometeorological 
indices used to quantify changes in the phenological behaviour 
and growth of crops under variable temperature (Kumar et al., 
2010). The growing degree days (GDD) were calculated using the 
following formula provided by Nuttonson (1955).

    …………. (1)

Where, Tmax = Daily maximum temperature (°C); 

Tmin =Daily minimum temperature (°C); 

Tb = Base temperature, for rice it was taken as 10°C. 

Statistical analysis

 The design of the experiment was factorial CRD. 
Statistical analysis of the data was done using SAS (ver. 9.3) 
statistical package (SAS Institute Inc., CA, USA).

RESULTS AND DISCUSSION

Temperature elevation inside the Open Top Chambers (OTC)

 In 2019 and 2020, mean seasonal temperature inside 
the chamber control treatment was 28.2 and 29.4°C respectively 
while mean seasonal temperature in elevated CO2 plus temperature 
treatment was 31.0 and 32.4°C respectively. 

Relationship between GDD and crop phenology

 Physiological maturity of Pusa Basmati 1509 occurred 4 
days earlier in both the years in elevated temperature treatment than 
chamber control. Maturity of Nagina 22 was earlier by 1 to 2 days 
in elevated temperature treatment than chamber control. Previous 
studies also showed that temperature rise accelerates the maturity of 
crops and thus reduces crop yield (Chakrabarti et al., 2021; Sandhu 
et al., 2017).

 Correlation analysis between GDD and crop duration 
showed that in both the varieties, increase in GDD had negative 
impact on crop duration (Fig. 1). GDD and crop duration were 
found to be negatively correlated and accumulation of more GDD 
in high temperature treatments reduced crop duration significantly. 
Chakrabarti et al., (2021) also reported that crop growth period was 
shortened by the higher aggregated GDD for all growth phases in 
wheat crop. Among the two varieties Pusa Basmati 1509 showed 
more negative correlation with GDD and crop duration than Nagina 
22.
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Effect of elevated CO2 and temperature on rice physiology

 Photosynthesis rate (Pn) ranged from 12.8 - 17.3 μmol 
CO2 m

-2s-1 during first year and from 14.5 - 19.5 μmol CO2 m
-2s-1 

during second year (Table 1). Maximum photosynthesis rate was 
observed in Pusa Basmati 1509 (20.3 and 25 μmol CO2 m-2s-1 in 
first and second year respectively) in elevated CO2 and ambient 
temperature treatment. Elevated CO2 significantly increased the 
photosynthesis rate in both the varieties. In elevated CO2 plus high 
temperature treatment, photosynthesis rate was significantly higher 
than control. 

 A significant component in controlling the rate of 
photosynthesis and plant carbon metabolism is stomatal conductance 
(gs), which influences the transport of CO2 from the atmosphere 

to the stomatal cavity. Elevated CO2 concentration of 550 ppm 
significantly reduced stomatal conductance in both the varieties 
while elevated temperature had no significant effect. In elevated 
CO2 plus high temperature treatment, stomatal conductance of Pusa 
Basmati 1509 and Nagina 22 were 0.28 and 0.24 mol H2O m-2 s-1 

during first year and 0.33 and 0.27mol H2O m-2 s-1during second 
year of study (Table 1). Similar observation was made by Zhang 
et al., (2022), who reported that elevated CO2 alone and elevated 
CO2 plus temperature interaction reduced stomatal conductance in 
rice. However, earlier research found that the impact of warming on 
stomatal conductance could be either positive or negative (Lahr et 
al., 2015; Urban et al., 2017).

 Transpiration rate (E) was found to be highest in chamber 
control treatment in both the varieties. In chamber control treatment 
transpiration rate of Pusa Basmati 1509 and Nagina 22 was 7.9 and 
7.1 mmol H2O m-2 s-1 respectively during first year and 8.5 and 7.2 
mmol H2O m-2s-1 respectively during second year of study (Table 1). 
Transpiration rate of both the varieties reduced in elevated CO2 plus 
high temperature treatment. Zhang et al., (2022) also reported that 
elevated CO2 and warming significantly reduced transpiration rate 
in rice throughout the growth period as compared to control. Apple 
et al., (2000) and Dwivedi et al., (2022) also found that elevated 
CO2 negatively induce transpiration rate. 

Effect of elevated CO2 and temperature on water use efficiency in 
rice

 Elevated CO2 increased both instantaneous and intrinsic 

Table 1:  Effect of elevated CO2 and temperature on photosynthesis rate (Pn), stomatal conductance (gs) and transpiration rate (E) of both Pusa 
Basmati 1509 and Nagina 22 in 2019 and 2020: Experiments and the results of an analysis of variance (ANOVA). The main effects 
are CO2, temperature (Temp.) and Varieties (Var.). Statistically significant differences are presented as (P <0.001, ***; P <0.01, **; 
P<0.05, *) and no statistical significance (P >0.05, ns).

1st year 2nd year

Treatment Varieties Pn gs E Pn gs E

Chamber control Pusa Basmati 1509 17.3b 0.31a 7.9a 19.5bc 0.36a 8.5a

Nagina 22 12.8c 0.28ab 7.1abc 14.5de 0.29bcd 7.2bc

Elevated 
temperature

Pusa Basmati 1509 15.3b 0.30a 7.4ab 17.2cde 0.34ab 7.1bc

Nagina 22 11.0c 0.29a 6.4bc 13.5e 0.28bcd 6.3c
Elevated CO2 Pusa Basmati 1509 20.3a 0.28a 7.0abc 25.0a 0.31abc 7.3bc

Nagina 22 16.6b 0.24b 6.1c 18.7bcd 0.22d 6.2c

Elevated CO2

&temperature
Pusa Basmati 1509 19.9a 0.28ab 6.9abc 22.1ab 0.33abc 8.1ab

Nagina 22 17.3b 0.24b 6.6bc 20.4abc 0.27cd 6.9bc

ANOVA Factors

CO2 *** ** ns *** ns ns

Temperature ns ns ns ns ns ns

Variety *** ** * ** *** **

CO2 X Temp. ns ns ns ns ns **

CO2 X Variety ns ns ns ns ns ns

Temp. X Variety ns ns ns ns ns ns

CO2 X Temp. X Variety ns ns ns ns ns ns

Fig 1: Correlation analysis between growing degree days (GDD) 
and crop duration of Pusa Basmati 1509 and Nagina 22

Elevated CO2 and temperature affect on WUE of rice
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WUE in the rice varieties. WUEinst of Pusa Basmati 1509 has 
increased under elevated CO2 as compared to chamber control from 
2.2 to 2.9 µmol CO2 mmol-1 H2O during first year and from 2.3 to 
3.6 µmol CO2 mmol-1 H2O during second year of study. Similarly, 
WUEinst has increased from 1.8 to 2.7 µmol CO2 mmol-1 H2O in first 
year and 2.0 to 3.0 µmol CO2 mmol-1 H2O in second year in Nagina 22 
(Table 2). Our findings concur with those of Ruiz-Vera et al., (2013) 
and Li et al., (2019) who concluded that WUE increased under high 
CO2 conditions. Instantaneous WUE increased by 19 to 29% in Pusa 
Basmati 1509 and by 44 to 47% in Nagina 22 variety under elevated 
CO2 plus temperature treatment than chamber control Zhang et al., 
(2022) also reported that except at anthesis stage, under elevated 
CO2 plus temperature condition instantaneous WUE of rice leaves 
showed an increasing trend due to reduced stomatal conductance at 
elevated CO2 condition.

 WUEintr of Pusa Basmati 1509 and Nagina 22 has also 
increased from 56.8 and 46.7 to 71.8 and 68.7 µmol CO2 mol-1 H2O 
respectively in first year under elevated CO2 treatment as compared 
to chamber control (Table 2). Similar trend was also followed in 
second year. According to Oiao et al., (2010), WUE enhanced 
under elevated CO2 condition due to increased carbon assimilation 
efficiency and decreased stomatal conductance and transpiration 
in C3 crops. Similar to instantaneous WUE, intrinsic WUE of Pusa 
Basmati 1509 and Nagina 22 was also observed to be increased by 
26 and 53 % respectively in first year and 23 and 54 % in second 
year under elevated CO2 plus temperature as compared to control. 
This might be due to the fact that plant net photosynthesis rate of 
rice was significantly higher while stomatal conductance reduced 
under elevated CO2 plus temperature condition. Percent increase of 
both instantaneous and intrinsic WUE has observed to be higher 
in Nagina 22 in both years as compared to Pusa Basmati 1509. 
Nagina 22, being a heat tolerant variety, exhibited more resistance 
towards temperature rise than Pusa Basmati 1509. Increased WUE 

also suggests that the genotype may be able to maintain a high rate 
of carbon assimilation under stress condition or may be elevated 
CO2 concentration may have amelioration effect (Hatfield and Dold, 
2019).

 Multiple correlations between these variables provide 
additional support for our findings. Results showed that 
photosynthesis rate is highly correlated (positive) with both 
instantaneous WUE (r= 0.89, p-value<0.001) and intrinsic WUE 
(r= 0.81, p-value<0.001). This indicates that higher photosynthesis 
rate enhance WUE due to increased carbon assimilation by plant. 
Stomatal conductance and transpiration rate are positively correlated 
(r= 0.82, p-value<0.001) and both of them are also negatively 
correlated with both instantaneous and intrinsic WUE. This suggests 
that lower stomatal conductance under elevated CO2 further reduced 
plant water loss through transpiration which eventually enhance 
plant WUE. The negative correlation of both WUEinst and WUEintr 
with stomatal conductance and transpiration rate is in agreement 
with Li et al., (2017) and Abdelhakim et al., (2021).

CONCLUSION

 The findings of this study suggest that elevated temperature 
caused more accumulated GDD in rice and accelerated the maturity 
of the crop. Co-elevation of CO2 and temperature, has also improved 
WUE through enhanced carbon assimilation and decreased stomatal 
conductance and transpiration in rice crop. According to the results 
of this study, rice displays genotypic variations in photosynthetic 
potential under co-elevation of CO2 and temperature. Therefore, 
it is essential to investigate a wider range of varieties in order to 
increase our understanding level on how climate change affects rice 
crop. This can potentially help in developing improved varieties  
with enhanced yield and WUE under CO2 and temperature  
condition.

Table 2: Effect of elevated CO2 and temperature on WUEinst(instantaneous WUE) (µmol CO2 mmol-1 H2O) and WUEintr (intrinsic WUE) (µmol 
CO2 mol-1 H2O) of both Pusa Basmati 1509 and Nagina 22 in 2019 and 2020: Experiments and the results of an analysis of variance 
(ANOVA).The main effects are CO2, temperature and Varieties. Statistically significant differences are presented as (P <0.001, ***; P 
<0.01, **; P<0.05, *) and no statistical significance (P >0.05, ns).

1st year 2nd year

Treatment Varieties WUEinst WUEintr WUEinst WUEintr

Chamber control Pusa Basmati 1509 2.2 bcd 56.8 bc 2.3 bc 54.9 b
Nagina 22 1.8 d 46.7 c 2.0 c 50.3 b

Elevated temperature Pusa Basmati 1509 2.1 cd 50.4 c 2.5 bc 50.3 b
Nagina 22 1.7 d 48 c 2.2 bc 49.3 b

Elevated CO2

Pusa Basmati 1509 2.9 a 71.8 a 3.6 a 84.4 a
Nagina 22 2.7 ab 68.7 ab 3 ab 86.3 a

Elevated CO2&temperature Pusa Basmati 1509 2.9 a 71.5 a 2.7 abc 67.6 ab
Nagina 22 2.6 abc 71.5 a 2.9 ab 77.6 ab

ANOVA Factors
CO2 *** *** ** ***
Temperature ns ns ns ns
Variety * ns ns ns
CO2 X Temp. ns ns ns ns
CO2 X Variety ns ns ns ns
Temp. X Variety ns ns ns ns
CO2 X Temp. X Variety ns ns ns ns

MAITY et al.
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