
The availability of irrigation information at the right time 
is of utmost importance in agriculture, as it not only increases crop 
production but also ensures food security (Surendran and Madhava 
Chandran, 2022; Wang et al., 2023; Yang et al., 2022). Therefore, 
it is vital to assess crop water stress and establish suitable irrigation 
schedules based on the crop water requirement during different 
growth stages (Geerts and Raes, 2009; Kumar et al., 2019; Wang 
et al., 2023). Typically, traditional methods involve measuring soil 
moisture availability for crop in the soil (i.e., available water for 
crop transpiration) and determining the actual evapotranspiration 
requirement (Feng et al., 2023; Katimbo et al., 2023; Kheir et al., 
2021; Maguire et al., 2022) of the crop (i.e., crop water demand) to 
assess irrigation requirement and crop stress (Allen et al., 1998). 
Additionally, information of crop type and growth stage is also 
taken into consideration during the assessment (Anila Bahadur et 
al., 2021; Sanjay Satpute et al., 2021). 

 The utilization of satellite remote sensing technology for 
crop monitoring and evaluation has become extensive (Brijesh Yadav 
et al., 2023; Rahul Nigam et al., 2023), and it has the potential to 
transform the efficiency of irrigation management. Regular periodic 
acquisition of satellite data allows for frequent updates on crop 
health and water requirements, which can be utilized to enhance 
irrigation scheduling and minimize water waste. Furthermore, 
various remote sensing indices can be utilized to estimate crop health 
and water stress, serving as critical indications of water deficiency 
that can activate irrigation events. By merging this information with 
weather forecast data and soil moisture, irrigation schedules can be 
customized to satisfy the unique needs of each crop and field (Rahul 
Nigam et al., 2023).

 The Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Water Index (NDWI), Temperature 
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Accurate information of crop water requirements is essential for optimal crop growth and yield. Assessing this information at the appropriate 
time, particularly during the vegetative and reproductive stages when water demand is highest, is crucial for successful crop production. Our 
study centered on the drought-prone Marathwada region, specifically targeting the years 2015 to 2020, encompassing the challenging drought 
year of 2015 and the favourable year of 2020. The crop water stress was detected using crop water stress (CWSI) index and compared with 
normalized difference vegetation index (NDVI) and normalized difference wetness index (NDWI) derived from satellite data. Our findings 
reveal a negative correlation between the CWSI and satellite derived vegetation indices NDVI and NDWI. Notably, the NDWI index exhibits 
stronger alignment with CWSI compared to NDVI. The correlation demonstrates particular robustness during drought or deficient rainfall years 
such as 2015, 2017, and 2019, while weaker correlations are observed in 2016, 2018, and 2020. Moreover, these correlations display variations 
across different areas within distinct rainfall zones.
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Condition Index (TCI), Vegetation Health Index (VHI), and Crop 
Water Stress Index (CWSI) are widely used to evaluate crop health 
and water stress (Swoish et al., 2022; Woldesellasse et al., 2019). 
The CWSI, in particular, is a powerful tool for assessing water 
stress and recommending irrigation (Jamshidi et al., 2021; Veysi et 
al., 2017). It measures crop water stress by comparing the amount 
of water transpired by a stressed crop with that of a well-watered 
crop. This difference in water transpiration causes a corresponding 
increase in canopy surface temperature, which can be easily detected 
using satellite thermal sensors (Veysi et al., 2017).

 The objective of this research paper is to investigate the 
application of satellite-derived crop water stress index (CWSI) 
in crop water stress assessment. To accomplish this, the first 
step involves estimating the CWSI over the Marathwada region. 
Subsequently, the CWSI index is also compared with two other 
satellite-derived health indices, NDVI and NDWI. 

MATERIAL AND METHODS

Study area

The present study focuses on the Marathwada region 
of the Maharashtra state which comprises of eight districts: 
Aurangabad, Jalna, Beed, Latur, Osmanabad, Nanded, Parbhani, 
and Hingoli. This region is situated in the rain shadow belt of the 
Sahyadri mountain range at the western ghats of Maharashtra, with 
a latitude extent ranging from 17°37’ North to 20°39’ North and a 
longitudinal extent ranging from 74°33’ East to 78°22’ East. The 
average annual rainfall in the region is approximately 750mm, which 
is relatively low compared to other regions of Maharashtra. As a 
result, the region is highly susceptible to droughts (Khetwani and 
Singh, 2020) and water scarcity, which have a significant impact on 
the agriculture and economy of the region.  Agriculture is primary 
source of livelihood in this region with major of people are engaged 
in farming. The region is known for producing a variety of crops, 
including cotton, soybean, sugarcane, and pulses. However, water 
scarcity is a major challenge for farmers in Marathwada, and many 
rely on rainfed agriculture due to a lack of irrigation facilities and 
groundwater resources, exacerbating the water problem and leading 
to crop failure and economic losses.

Data

Land surface temperature (LST): Satellite-based LST is the 
Earth’s surface temperature which is a critical parameter in many 
applications, including drought monitoring, climate studies, 
hydrology, agriculture, forest fire detection and urban planning. 
In this study, MOD11A2.061 product of the Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensor on board the Terra 
satellite is utilized. It provides data on land surface temperature 
(LST) at a global scale with a spatial resolution of 1 km and a 
temporal resolution of 8 days. MOD11A2.061 uses a split-window 
algorithm to retrieve LST from MODIS observations in two thermal 
bands centred at 11 and 12 µm (Wan et al., 2021). MODIS LST data 
was obtained from https://earthexplorer.usgs.gov/.

Normalized difference vegetation index (NDVI) and Normalized 
difference water index (NDWI): NDVI and NDWI are most popular 

and well recognized vegetation index from satellite observation 
(Kshetri, 2018). NDVI is a measure of greenness of vegetation 
while NDWI is measure of water content in the plants. In this study 
MOD13Q1.061 product of MODIS sensor on board Terra/Aqua 
satellite (Didan et al., 2021) is utilized. It provides data at a global 
scale with a spatial scale of 250 m and temporal resolution of 16 
days. The product includes multiple layers of information, such as 
NDVI, EVI and other surface reflectance information of red surface 
reflectance (645 nm), near infrared (NIR) surface reflectance (858 
nm), Blue surface reflectance (469 nm), mid infrared (MIR) surface 
reflectance (2130 nm/ 2105-2155 nm). MODIS vegetation index 
data was obtained from https://earthexplorer.usgs.gov/. NDVI 
product is directly available in this product while we computed 
NDWI from surface reflectance band. NDVI and NDWI values 
show variations throughout different crop stages, with minimum 
values observed during sowing and maturity stages, and maximum 
values during the vegetative stage. To assess crop stress, anomalies 
in these indices are compared to historical values.

Rainfall gridded data: In this study, we have used daily rainfall 
gridded data from National Climate Centre (NCC) of India 
Meteorological Department (IMD) (https://www.imdpune.gov.in/
lrfindex.php) which is available at daily frequency with 25km X 
25km spatial scale. This gridded rainfall data is prepared from the 
6955-rain gauge station using inverse distance weighted (IDW) 
interpolation method (Pai et al., 2014). 

Crop water stress index (CWSI) computation

Canopy temperature is an indicator for detecting water 
stress in crops (Clawson et al., 1989; Fuchs, 1990; Jackson et al., 
1981). Idso et al., (1981) and Jackson et al., (1981) introduced 
a normalized index CWSI (crop water stress index) which is 
estimated based on the canopy temperature and air temperature 
difference using thermometer. CWSI ranges between 0-1 in which 0 
or lower baselines represents no water stress and plant transpires at 
the potential rate while 1 or upper baselines for high water stressed 
conditions (Jamshidi et al., 2021).

Where Tc is a crop temperature and Ta is air temperature 
and subscriptions U and L represents the upper and lower limit of 
difference of canopy and air temperature.

 In-situ data upscaling over a large spatial region is 
challenging (Jamshidi et al., 2021). To address this, remote sensing 
approach is suggested for estimation of CWSI (Idso, 1982 and 
Jackson et al., 1981). Hot and cold pixel approach is utilized in 
direct estimation of CWSI (Veysi et al., 2017) and the same method 
also utilized in many studies for evapotranspiration estimation using 
energy balance approach (Bastiaanssen et al., 1998).  

Where CT is canopy temperature extracted from remote sensing 
LST data, canopy temperature represents the average temperature 
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of the entire plant canopy while crop temperature focuses on the 
temperature of individual plants. According to Allen et al., 2007; 
Bastiaanssen et al., 1998, the criteria of cold pixel selection should 
be	minimum	LST	of	the	vegetation	whose	NDVI	values	is	≥	0.7	and	
similarly the criteria of hot pixel selection should be maximum LST 
of	 the	vegetation	whose	NDVI	values	 lies	between	0.1≤	NDVI	≤	
0.28 (Fig. 1).

RESULTS AND DISCUSSIONS

Spatial-temporal variability of observed rainfall climatology

 The distribution of rainfall during the south-west summer 
monsoon (June to September) in the Marathwada region is divided 
into three distinct zones based on climatological rainfall patterns. 
These zones are characterized by high, medium, and low rainfall. 
The high rainfall zone (750-900mm) includes Hingoli and Nanded, 
while the medium rainfall zone (650-750mm) comprises of certain 
eastern areas of Jalna, Latur, and Parbhani. On the other hand, 
the low rainfall zone (<650 mm) includes Aurangabad, Beed, 
and Osmanabad. The regions with low and medium rainfall are 
particularly vulnerable to drought and this rainfall distribution is 
illustrated in Fig. 2.

Crop water stress (CWSI) and relation with vegetation indices

The year 2015 was a severe drought year that severely 
impacted the major agricultural area (Rajeevan and Nayak, 2017; 
Soni et al., 2023) while 2020 was a normal year. As per the IMD 
subdivision rainfall data, the Marathwada region received -40% 
less rainfall compared to the long period average (LPA) rainfall 
(Kulkarni et al., 2016). In this study, the Crop Water Stress Index 
(CWSI) was estimated for the period 2015 to 2020 and compared 
with the satellite-derived vegetation greenness index NDVI, as well 
as the crop water index NDWI. The findings of the study indicated 
that there exists a stronger negative correlation between CWSI and 
NDWI in comparison to the alignment observed between CWSI 
and NDVI. The CWSI index demonstrated a notable agreement, 
particularly during drought or instances of deficit rainfall years (Fig. 
3). The degree of alignment between CWSI and vegetation indices 
exhibited variations across different years and precipitation patterns. 
Notably, a strong agreement was observed in regions with low 
rainfall, specifically in districts such as Osmanabad, Aurangabad, 
and Beed. In the context of the Osmanabad district, the agreement 
range between CWSI and NDWI varied from -0.34 to 0.67. 
Intriguingly, a strong correlation was established during the years 
2015, 2017, 2019, and 2020 (Fig.4a). Similarly, the compatibility 
between CWSI and NDVI showed positive results for the years 2015 
and 2019 (Fig.4b). Moving to Aurangabad district, the agreement 
range between CWSI and NDWI was noted to between the range of 
-0.21 and -0.81. Notably, a high correlation was observed during the 
years 2015, 2017, and 2019, following a similar trend for the NDVI 
index (Fig. 4b). In the Beed district, certain western and central 
areas fall within the low rainfall zone, whereas the eastern part falls 
within the mid rainfall zone. The correlation between the CWSI and 
the NDWI index displays a range of variation from -0.04 to -0.71. 
Strong concurrence was evident in the years 2015, 2017, 2018, and 
2019, while a weaker correlation was observed for the normal year 
2020 (Fig. 4a). 

The mid-rainfall districts of Jalna, Latur, and Parbhani 
exhibited a consistent pattern, displaying a significant correlation in 
the years 2015, 2017, and 2019, while indicating a less pronounced 
correlation in the years 2016, 2018, and 2020. For these specific 
districts, the correlation range between CWSI and NDWI ranged 
from -0.14 to -0.58 for Jalna, -0.08 to -0.69 for Latur (Fig 3e), and 

Fig.1: Flow chart for crop water stress index (CWSI) computation

Fig. 2:  Observed IMD gridded rainfall climatology (June to 
September) 1951-2022
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-0.09 to -0.79 for Parbhani (Fig.4a).

The districts with higher rainfall, namely Hingoli 
and Nanded, demonstrated a distinct pattern. They presented 
a substantial correlation only during the years 2015 and 2016, 
whereas in the remaining years, a feeble correlation was observed 
between the indicators. In the case of the Hingoli district, the NDWI 

correlation range varied from -0.03 to -0.66, while for Nanded, it 
ranged between -0.09 and -0.52 (Fig.4a).

Thermal sensors are highly advantageous due to their 
ability to detect temperature variations in plants, which provides 
valuable insights into their health and water stress levels. This 
information can be utilized to optimize irrigation and focus on areas 

Fig. 3: Spatial maps of indices NDVI, NDWI, and CWSI for Marathwada region
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Fig.4 (a): Scatter plot of indices CWSI and NDWI

that may require additional attention. In contrast, shortwave infrared 

sensors (SWIR) are limited to identifying plant stress caused by 

water deficit or heat stress. Consequently, thermal sensors are 

regarded as more beneficial than SWIR for agriculture, particularly 

in arid or semi-arid regions where water stress is a major concern.

CONCLUSIONS

The Marathwada region experiences distinct rainfall 
distribution during the southwest summer monsoon, divided into 
three zones based on rainfall levels: high, medium, and low. The 
study analyzes the Crop Water Stress Index (CWSI) from 2015 to 
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2020, comparing it with NDVI and NDWI. Results reveal a stronger 
negative correlation between CWSI and NDWI than with NDVI. 
Notably, agreement between CWSI and indices is pronounced 
during droughts, varying across years and precipitation patterns. 
Strong concurrence was observed in low rainfall regions, like 
Osmanabad, Aurangabad, and Beed. Similarly, mid-rainfall districts 
exhibited consistent correlations (Jalna, Latur, Parbhani), while high 
rainfall districts (Hingoli, Nanded) showed correlations mainly in 
2015 and 2016. The study’s findings suggest that the CWSI index 

offers valuable insights during periods of drought or inadequate 
rainfall, but its applicability might be misleading in years with 
ample rainfall.  
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