
Increasing population, economic development, and migration 
have changed cities’ land use and land cover (LULC). Climate 
change, global warming, and local climate fluctuations changes 
the Earth’s surface energy budget. Evaporation, solar radiation 
absorption, and biodiversity are affected by LULC distribution 
variations. Industrial and commercial areas are hotter than green 
places; hence urbanization enhances land surface temperatures. 
Biophysical variables modify land cover, whereas human activities 
change land use (Lambin et al., 2001). Microclimates, biodiversity, 
ecosystem services, and environmental health are regulated by 
urban vegetation (Lin et al., 2015). Vegetation cover decreases 
temperatures and improves urban ecology (Richards and Belcher 
2019). Temperature is one of the important parameters affecting 
agriculture and hence, has widely been used in yield prediction 
incorporating spatial information (Bhagia et al., 2005; Chaudhari 

et al., 2010; Dadhwal and Bhat, 2023). Urban land use change is 
complex and often transforms vast volumes of natural and semi-
natural plants, lowering city greenery. Green regions protect 
biodiversity, biotic and abiotic ecosystems, and local, regional, and 
global land surface temperature (LST). Global warming is caused 
by damaging land use (Rakib et al., 2020). Urban area management 
and sustainable city design require precise land use and cover 
data and urban surface thermal characteristics. Field research and 
manual data gathering to track these changes can be expensive, 
time-consuming, and inaccurate. Satellite imaging and remote 
sensing provide fast, accurate, and cost-effective data collecting and 
processing.

The Landsat series of satellites offers high-resolution 
estimations of land surface temperature (LST) that are particularly 
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The aim of this study is to analyze land cover changes and their effects on land surface temperature (LST) and normalized difference vegetation 
index (NDVI) in Muzaffarpur district, Bihar, India. The research utilized Landsat 5 and 8 satellite images taken every five years from 1990 
to 2020 to classify seven land cover types, namely built-up areas, wetlands, fallow lands, croplands, vegetation, and water bodies, using the 
Artificial Neural Network technique in ENVI 5.1. The resulting land cover maps reveal a significant decrease in cropland area during the studied 
period, while fallow land area decreased from 48.06% to 35.79%. Analysis of LST and NDVI data showed a strong negative correlation (R2 < 
-0.0057) for all years, except for a weak positive correlation (R2 > 0.006). NDVI values were highest in agricultural lands with the lowest LST 
values, while fallow land areas showed the opposite trend. The study suggests that vegetation and fallow land are crucial determinants of the 
spatial and temporal variations in NDVI and LST, relative to urban and water cover categories.
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beneficial for small-scale and local research. Although many 
LST algorithms have been proposed for Landsat, several of them 
necessitate calibration coefficients and input data that may not be 
easily accessible. While some datasets are available online, they 
can be unwieldy due to the large amounts of data that need to be 
managed.  Google Earth Engine (GEE) can analyse huge data for 
remote sensing analysts. This paper aims to investigate the impact 
of land surface temperature (LST) on agriculture in Muzaffarpur 
district, Bihar using remote sensing and GIS tools. The study 
objectives include generating maps of LULC categories and 
NDVI, analyzing the temporal and spatial distribution of LST, and 
examining the correlation between LST and NDVI from 1990 to 
2020. The research utilizes Google Earth Engine (GEE) and Landsat 
5 and 8 data to accomplish these objectives.

MATERIALS AND METHODS

Study area

Muzaffarpur district is situated in northern Bihar, India, 
and covers an area of 3,175.9 square kilometers. It is located 
between 25° 53′ N to 26° 25′ N latitude and 84° 50′E to 85° 45′ E 
longitude. The district serves as the headquarters of Tirhut Division, 
which was the ancient name for northern Bihar. The region is known 
for its fertile lands and is located in the Gangetic plain. Rivers such 
as Gandak, Budhi Gandak, Bagmati, and Lakhandei, as well as 
many streams, flow through the area. However, the region is also 
prone to floods (Fig.1). 

   This study employed Landsat satellite data for classifying 
land use/land cover (LULC) and measuring land surface temperature 
(LST) and NDVI over vast spatial scales. These specialized sensors 
can detect thermal infrared (TIR) radiation emitted by the land 
surface. The Landsat 5-TM data of May 11, 1990; Landsat 7-ETM+ 
data of May 5, 2000; Landsat 7-ETM+ data of May 26, 2010 and 
Landsat 8-OLI data of May 5, 2020 were used in the study.

Image pre processing

In order to enable classification and eliminate systematic 
errors, the Landsat 4-5 TM images were subjected to atmospheric 
and radiometric corrections during the image pre-processing stage. 
However, no such corrections were required for Landsat 8 OLI/
TIRS images. Image processing, analysis, and map production 
were carried out using ERDAS IMAGINE and ArcGIS software. To 
ensure seamless processing and classification, a mask of the area of 
interest (AOI) was generated from all images. 

LULC classification

ENVI 5.1 software was employed to classify images using 
an Artificial Neural Network (ANN) model. The images were 
classified based on various land use categories, such as built-up 
areas, vegetation, fallow land, cropland, litchi cultivation areas, 
wetlands, and water bodies. 

Accuracy assessment

The confusion matrix approach was used to evaluate the 
accuracy and effectiveness of the classified images, and metrics such 

as kappa statistics, producer accuracy, user accuracy, and overall 
accuracy were calculated to provide a comprehensive understanding 
of the classification accuracy.

Calculation of normalized difference vegetation index (NDVI)

The Google Earth Engine has a built-in function to compute 
NDVI from an image using the red and near infrared (NIR) 
frequency bands, which is then added as a new band. Since Landsat 
5 and Landsat 8 have different band combinations for capturing the 
red and NIR band spectra, separate NDVI functions were utilized. 
Specifically, Landsat 5 uses band three for the red band and band 
four for the NIR band, while Landsat 8 uses band four for the red 
band and band five for the NIR band. 

Computation of land surface temperature (LST)

To maintain consistency with previous research and due to 
the simplicity of implementation, the single channel (SC) technique 
was utilized in this study to estimate land surface temperature (LST) 
from Landsat satellite data. This approach, which only requires one 
thermal infrared channel, has been widely used in previous studies 
by researchers such as (Dash et al., 2002). Among the Landsat 5, 
7, and 8 series, only Landsat 8 has two thermal bands, making the 
SC technique the best choice for this analysis. The LST (TS) was 
calculated using the radiative transfer equation and a SC technique 
by determining the radiance-at-the-sensor in a single band. 

 Where, ɛ is the surface emissivity, τ is the atmospheric 
transmissivity, B is the Planck function, Lsen is the radiance-at-the-
sensor, Lup is the thermal path radiance, Ldown is the down welling 
irradiance, and Lup is the thermal path radiance. 

Fig. 1: Location map of Muzaffarpur district, Bihar
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Thermal radiance-at-sensor from landsat

The Landsat level 1T products provided by USGS are 
available in GEE as an image collection, and the GEE function 
applies scaling factors to convert the digital numbers in the images 
to radiance-at-sensor values, ensuring a consistent 30m x 30m 
resolution for all products through a cubic convolution resampling 
technique.

Brightness temperature and cloud mask

In this study, Landsat top-of-the-atmosphere (TOA) 
brightness temperature data were obtained from the GEE library’s 
image collection. These data were generated by inverting the Planck 
function, and were accompanied by cloud cover data obtained using 
the Fmask technique, which can detect clouds, cloud shadows, 
and water surfaces in Landsat images (Zhu and Curtis 2012; Zhu 
et al., 2015). The brightness temperature data were used to extract 
information about clouds, cloud shadows, and water surfaces.

Surface reflectance

The Landsat surface reflectance, a high-level product 
developed by the Landsat Ecosystem Disturbance Adaptive 
Processing System (LEDAPS) (Masek et al., 2017) provides surface 
reflectance data for six bands covering a wavelength range of 0.22-
2.35m and with a spatial resolution of 30m x 30m. In this study, the 
red and near-infrared bands are used to calculate NDVI, which is a 
prerequisite for computing the NDVI-based emissivity.

Emissivity

The equation calculates the fraction of vegetation cover 
(FVC) based on NDVI thresholds for vegetated and non-vegetated 
surfaces and uses reference emissivities for these two surfaces to 
determine emissivity, resulting in a 30m x 30m spatial resolution 
NDVI-based emissivity product matching that of Landsat’s thermal 
data.

Implementation of the LST algorithm in the GEE

The Landsat LST main module utilizes input information 
such as date range, Landsat satellite, region of interest, and NDVI-

based correction flag for emissivity to load collections of TOA 
brightness temperatures and surface reflectance, apply cloud 
masking, and use NDVI and FVC values to determine emissivity 
and apply the SC algorithm to Landsat TIR bands.

RESULTS AND DISCUSSIONS

LULC classification accuracy

In order to evaluate the effectiveness of the classification 
process, accuracy assessment is considered a critical aspect. The 
primary objective of this evaluation is to determine how effectively 
pixels were assigned to their respective land cover categories. 
During the accuracy assessment, areas that were easily identifiable 
on both Google Earth and Landsat images were given priority when 
selecting samples. The accuracy of the classification results is often 
determined using error matrix-based statistics, which include overall 
accuracy (OA), producer’s accuracy (PA), and user’s accuracy 
(UA). For this study, thematic maps for the years 1990, 2000, 2010, 
and 2020 were each subjected to an accuracy assessment. OA is 
calculated by dividing the number of correctly classified pixels by 
the total number of pixels, while PA is determined by dividing the 
number of correctly detected pixels by the total number of reference 
pixels. UA is calculated by dividing the number of correctly 
classified pixels for a particular class by the sum of the row totals. 
The classification accuracy of the LULC images is presented in 
Table 1.

LULC changes

The LULC maps created by analyzing the Landsat TM/
ETM+/OLI dataset for the years 1990, 2000, 2010, and 2020 served 
as the basis for change analysis. Table 2 depicts the changes in land 
cover categories during this period in Muzaffarpur district. The 
analysis of Landsat spatiotemporal data for these years revealed 
that the Built-Up area in the district has increased significantly. In 
1990, 3.08% of the total land area was built up, which increased to 
4.17% in 2000, 7.79% in 2010, and 9.76% in 2020. The vegetation 
area, on the other hand, decreased progressively from 1990 to 2020. 
The total vegetation area in the region was 15.17% in 1990, which 
decreased to 13.37% in 2000, further decreased to 11.26% in 2010, 
but slightly increased to 12.56% in 2020.

The cropland in the study area increased from 31.10% in 
1990 to 33.11% hectares in 2000, but slightly decreased to 28.50% 
in 2010 and further decreased to 25.89% in 2020. Wetlands, which 
included the majority of fallow lands, decreased from 3.10% in 1990 
to 2.50% in 2000, and then further to 2.04% in 2010, but showed 
a slight increase to 2.08% in 2020. The waterbodies group was 
observed to evolve more slowly than other LULC groups, with an 
overall area coverage of 3.31% in 1990, which decreased to 3.14% 
in 2000, 3.03% in 2010, and 2.57% in 2020.

Litchi, the dominant class in the study area, was treated 
separately from vegetation due to its high economic importance. 
The area used for growing Litchi increased from 1.18% in 1990 to 
1.41% in 2000, 2.57% in 2010, and 3.35% in 2020. The distribution 
of LULC classes in Muzaffarpur district for various years, including 
1990, 2000, 2010, and 2020, is shown in Fig. 2.

Table 1: Accuracy assessment of LULC maps of Muzaffarpur 
district

Classes User’s accuracy 
(UA, %)

Producers’ accuracy 
(PA, %)

Built up area 90.3 91.9
Wetland 95.4 90.9
Fallow land 79.7 86.0
Cropland 88.4 90.9
Vegetation 79.7 87.4
Litchi cultivation  90.5 86.8
Waterbody 97.4 91.1

Spatial variations of LST and NDVI in Muzaffarpur district, Bihar
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Changes in normalized difference vegetation index (NDVI)

In Muzaffarpur district, the spatial distribution of the 
Normalized Difference Vegetation Index (NDVI) is illustrated in 
Fig. 3. Cropland has the highest NDVI values, while urban and water 
areas have the lowest NDVI values. Urban areas and road networks 
have NDVI values between 0.1 and 0.199, and vegetation areas are 

mostly concentrated in the northern part with NDVI values between 
0.2 and 0.6. NDVI values around zero from -0.1 to 0.1 are primarily 
found in desert and barren regions, and negative values (-0.1 or less) 
correspond to water and wetlands. Additionally, the average NDVI 
values over the Muzaffarpur district gradually decreased from 1990 
to 2020. 

Fig. 4: LST map of Muzaffarpur district, Bihar in different years Fig. 5: Correlation graph between NDVI and LST

Table 2: Change in LULC during the period of 1990 to 2020

Class Name 1990 2000 2010 2020

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)
Built-up area 1534 3.08 3722 4.17 15215 7.79 23807 9.76
Vegetation 48141 15.17 29749 13.37 23046 11.26 26823 12.56
Cropland 98709 31.10 136799 33.11 109475 28.50 104292 25.89
Fallow land 152496 48.06 133043 41.14 152218 38.51 143913 35.79
Wetlands 10151 3.10 7396 2.50 6501. 2.04 6616 2.08
Waterbody 4179 3.31 3958 3.14 3137 3.03 3111 2.57
Litchi cultivation 3759 1.18 4496 1.41 8168 2.57 10597 3.35

Fig. 2: LULC map of Muzaffarpur district, Bihar in different years Fig 3:  NDVI map of Muzaffarpur district, Bihar in different years
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Changes in land surface temperature (LST)

The Land Surface Temperature (LST) in Muzaffarpur 
district has increased gradually from 1990 to 2020, as demonstrated 
by Fig 4 depicting the spatial distribution of LST during the month 
of May for each decade during the period. Agriculture areas 
consistently exhibit the lowest LST, and the LST and land cover 
patterns are nearly identical. The central part of the district, which 
is predominantly covered by built-up areas, has the highest LST 
values. Urban areas demonstrate a higher LST in comparison to 
agriculture areas and water bodies, due to their high solar radiation 
absorption capabilities. Conversely, vegetation or water areas 
exhibit lower LST values due to scattering of solar radiation, plant 
heat absorption, and transpiration. The LST values have increased 
over Muzaffarpur district from 1990 to 2020 and correspond 
with the decline in agriculture. To mitigate the urban heat island 
phenomenon in Muzaffarpur district, it is essential to convert land 
cover to agricultural regions.

The relationship between LST, NDVI, and land cover

The negative correlation between LST and NDVI has been 
extensively studied in the literature for various geographical regions 
(Chen et al., 2006; Gorgani et al., 2013; Alemu, 2019; Kumar et al. 
2022). In all of these studies, a negative relationship between LST 
and NDVI was found. In Muzaffarpur District, the link between LST 
and NDVI was investigated using the correlation coefficient (R) and 
coefficient of determination (R2) on selected dates. Fig. 5 displays 
a graph demonstrating the correlation between LST and NDVI. The 
R values for all time periods indicate a strong negative relationship 
between LST and NDVI, with values exceeding 95%. Additionally, 
R2 values exceeding 91% indicate that changes in LST may account 
for more than 91% of the variation in NDVI, with less than 10% of 
the variation in NDVI attributed to random fluctuation. The graph in 
Fig. 5 illustrates that during the period trend shows lower NDVI and 
slightly higher LST. It was also discovered that as agricultural fields 
moved westward over time, LST decreased and NDVI increased 
in the western region. This indicates that an increase in vegetation 
cover results in higher NDVI and lower LST, and vice versa, where 
LST has a negative correlation with NDVI and vegetation cover. 
By examining Fig. 5, it can be observed that agriculture, urban, and 
water areas have a strong negative correlation with LST (R = -0.98, 
-0.96, and -0.95, respectively) and a positive correlation with NDVI 
(R = 0.97 for all three land categories).

CONCLUSIONS

This study used remote sensing technology to investigate the 
temporal and spatial distribution of LST and its correlation with 
NDVI in the Muzaffarpur district of Bihar. The results indicated 
that fallow lands and sandy areas have the lowest LST and highest 
NDVI values, and there is a negative correlation between LST 
and NDVI. The findings of this study suggest the importance of 
preserving vegetation-based land cover in urban settings to promote 
biodiversity, regulate microclimates, and improve environmental 
health. Such preservation efforts can help to mitigate the adverse 
effects of land use change and promote sustainable urban 
development.
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