
 Agronomic experiments are location specific and 
subject to spatial and temporal variability (Basso et al., 2016). It 
is, therefore, challenging to transfer new production technologies 
across locations where soils and climate are different (IBSNAT, 

1993, Tsuji et al., 1998). For understanding of the complex soil-
crop-weather-management system and to facilitate the decision-
making process, crop simulation models have been developed (Jones 
et al., 1998; 2016). These models simulate the dynamic growth and 
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development of the soil-plant-atmosphere system and ultimately 
predict crop yield and other traits (IBSNAT, 1993; Hoogenboom, 
2000). Crop modelling had its early origins with scientists such 
as de Wit (1965), Monteith (1965), Duncan (1971), Duncan et al. 
(1967) and Loomis et al. (1979). By 1974, Duncan had developed 
crop models for cotton, peanut, soybean, and maize, and in 1978, de 
Wit and colleagues published a monograph describing the generic 
crop model BACROS (de Wit, 1978). During the early days of crop 
modeling, these models were mainly used in laboratories or the 
research groups where they were originally developed (Jones et al., 
2016). 

With the start of the International Benchmark Sites 
Network for Agrotechnology Transfer Project in 1981 (IBSNAT, 
1993; Tsuji, 1998; Uehara and Tsuji, 1998; Jones et al., 1998), the 
Decision Support System of Agrotechnology Transfer (DSSAT) was 
conceptualized and developed. India played a key role in the early 
days of crop modeling and IBSNAT through a symposium organized 
at ICRISAT on minimum data (ICRISAT, 1984). DSSAT is an 
extensive crop modeling ecosystem that includes crop simulation 
models for more than 40 crops through the Cropping System Model 
(CSM) (Jones et al., 2003; Hoogenboom et al., 2019a). Models for 
new crops are continuously being added, such as strawberry (Hopf 
et al., 2022a, b) for fruit crops, guinea grass (Brunetti et al., 2021) 
for forages, and carinata as an oil crop (Boote et al., 2021). The most 
recent versions of DSSAT are DSSAT Version 4.7.5 (Hoogenboom 
et al., 2019b) that was released in 2017 as Version 4.7 and has been 
distributed to more than 17,275 users and DSSAT Version 4.8 
(Hoogenboom et al., 2021) that was released in 2021 and has been 
distributed to more than 3,400 users as of December, 2022. DSSAT 
can be obtained from the DSSAT web portal at www.DSSAT.net 
as a free software tool, while the source code is completely Open 
Source and available from GitHub.

DSSAT has been used for the past 30 years by researchers 
all over the world for a variety of purposes, including optimizing 
sowing dates (Halder et al., 2017; Nouri et al., 2017; Rahmani 
et al., 2018; Phoncharoen et al., 2021), fertilizer management 
(Gheysari et al., 2009a, 2009b; Wajid et al., 2021; Rizwan Shahid 
et al., 2020; Khan et al., 2022), manure management (Babel et 
al., 2019), irrigation management (Zhou et al., 2019, Dar et al., 
2017; Mompremier et al., 2021), tillage management (Liu et al., 
2013), planting density (Zhang et al., 2019; Zhang et al., 2022), 
soil management (Yang et al., 2013), cultivar selection (Chen et 
al., 2021; Mall et al., 2016), climate change impact studies (Anser 
et al., 2020; Zhang et al., 2019; Nasir et al., 2020), in-season and 
long-term recommendations (Wang et al., 2021; Chen et al., 2020; 
Jha et al., 2022), yield forecasting (Singh et al., 2017; Shelia et al., 
2019; Choudhary et al., 2021), climate change adaptation studies 
(Saddique et al., 2020; Ahmad et al., 2020), precision agriculture 
(Fu et al., 2020; Bai and Gao 2021), and many others (Jones et al., 
2003). 

Until recently, the review on the performance of the 
DSSAT models for different environmental conditions and crop 
management practices has been limited. Timsina and Humphreys 
(2006) and Basso et al., (2016) reviewed the performance of the 
CERES-Rice, CERES-Wheat and CERES-Maize models, but a 

comprehensive review on the performance of these models and 
other crop models that are included in the DSSAT crop modeling 
ecosystem during the past decade is lacking. Moreover, there 
has been little quantitative and systematic evaluation on their 
performance using robust statistical criteria and there have been 
limited attempts to synthesize the results of these evaluations, 
especially for Asia. We, therefore, designed a research question to 
evaluate the performance of the DSSAT crop simulation models 
during the last decade from January 2010 to February 2022 in 
South-Asia, including India, Pakistan, Bangladesh, Nepal, Sri 
Lanka, and Bhutan, and in China. These countries represent some 
of the most popular countries for requests of the DSSAT software. 
For the period from 2019 through October, 2022, there were 3,182 
requests from India, 1,937 requests from China, 1,570 request from 
Pakistan, 131 requests from Nepal, 130 requests from Bangladesh, 
110 requests from Sri Lanka, and 38 requests from Bhutan.

Accordingly, the literature search was focused on (1) 
finding the different soil, crop and fertilizer related variables that 
were tested for the DSSAT crop simulation models under different 
conditions, and (2) compiling the statistical parameters used for 
testing the accuracy of the simulated results. The overall goal of 
this review is to provide a comprehensive study on the performance 
of the DSSAT crop simulation models and to provide an insight 
towards the priority areas for future research.

MATERIALS AND METHODS

We first started this study with defining the research 
question, and then we determined the search protocol on the ISI 
Web of Science database (https://www.webofscience.com/wos/). 
We used the following search strings to find the potential studies 
that included DSSAT and one of the crop modules of the Cropping 
System Model, including CERES, CROPGRO, CROPSIM, 
SUBSTOR, and CANEGRO: [“DSSAT[Topic) or DSSAT (All 
Fields) or CERES (All Fields) or CROPGRO or CROPSIM or 
CANEGRO or SUBSTOR or Cassava (All Fields). With respect 
to countries, we included Peoples R. China or India or Pakistan or 
Bangladesh or Nepal or Sri Lanka or Bhutan (Countries/Regions). 
For categories we used Agronomy or Environmental Sciences 
or Water Resources or Soil Science, which are Web of Science 
Categories. We then used Articles or Review Articles as Document 
types and Elsevier or Association of Agrometeorologists or MDPI 
or Springer Nature or Wiley or Taylor & Francis or American 
Society of Agronomy as Publishers. With respect to publishers and 
categories, we might have missed a few publications. 

In total, 285 publications were found by the database 
using these search criteria. Once the relevant studies were read, 
they were selected and assessed using a set of selection criteria, i.e., 
availability of field data and/or availability of simulation results. 
Finally, 205 papers were selected for the study. We utilized a 
data extraction form to extract the selected papers to answer our 
defined research questions related to determine the different soil, 
crop and fertilizer related variables that were tested for the models 
under different conditions and compiling the statistical parameters 
used for testing the accuracy of the simulated results. Finally, we 
performed data synthesis and presented the results of the extracted 
data. A meta-analysis of the data was also done to check the overall 
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performance of the model in simulating the anthesis date, maturity 
date, leaf area index (LAI), grain yield and biological yield. The 
statistical parameters used for determining the performance of the 
model or accuracy of the simulated results were calculated as per the 
procedures of Timsina and Humphreys (2006). A model reproduces 
observed data perfectly when the coefficient of determination, 
(R2), Nash-Sutcliffe modelling Efficiency (NSME), or d-index is 
1, while the Root Mean Square Error (RMSE), Normalized RMSE 
(RMSEn), Mean error (ME), or Standard error (SE) is 0. 

RESULTS AND DISCUSSION

The results regarding the performance of the model in 
simulating the phenology, growth and yield of the different crops 
is presented separately for each individual module in the following 
sections. 

CSM-CERES-Wheat

A total of 63 field studies tested the CERES-Wheat model. 
However, only 46 studies reported the evaluated variables, with the 
largest number of studies were from China (25), followed by India 
(15) and Pakistan (6). The model has been tested under the wide 
range of climatic condition ranging from arid to humid climate. The 
model has been evaluated for different phenological, growth, and 
yield variables (Fig.1). The variable that was evaluated by most 
of the studies was grain yield (41 studies), days to physiological 
maturity (23 studies), days to anthesis (21 studies), above ground 
biomass (16 studies), LAI (7 studies), crop evapotranspiration and 
unit grain weight (4 studies), days to flowering, leaf area/plant, 
number of grains/ear, forecasted yield, canopy N, grain protein, 
soil water content (2 studies) and sowing date, days from sowing-
emergence, emergence-jointing, jointing to flowering, flowering-
maturity, days to emergence, days to jointing days to emergence, 
days to jointing, No. of ears/m2, straw yield, harvest index N, 
Biomass N, grain N, grain filling duration, days to harvest and N 
use efficiency (1 study). As shown in Fig. 1, it can be clearly noticed 
that most of the authors relied on evaluated the number days taken to 
anthesis and to physiological maturity, grain yield and above ground 
biomass, while less attention was given to other phenological events 
and growth attributes. There is, therefore, a need to evaluate other 
growth and yield variables for more reliable understanding of the 
performance of crop models. The research gap regarding simulation 
of soil and crop water balance, fertilizer and water use efficiencies 
and quality attributes needs to be fulfilled in the future.

The researchers have used different statistical procedures 
to determine the performance of CERES-Wheat model in simulating 
the different growth and yield attributes and other crop, soil and 
water related variables 9 (Table S1). A total of 43 studies reported 
the different errors for evaluating model performance, with 23 from 
China, 16 from India and 4 from Pakistan. For most of the studies, 
the difference between the simulated and observed date of anthesis 
was in the range of 2~4 days. However, a deviation as low as 0 days 
(Wajid et al., 2021) and as high as 8.4 days (Ye et al., 2020) were 
also reported. The relative error of 4.4% was reported by Zhong 
et al., (2017) in China under different management scenarios; a 
mean absolute error of 4.6% was reported by Dar et al., (2017) for 
different drip irrigation schedules. The difference for the number of 

days to physiological maturity was also less than 5 days for most of 
the studies. However, differences as large as 38 days (Kour et al., 
2013) under climate change studies in India or 10 days (Chen et al., 
2021) for evaluating spring wheat phenology of different cultivars 
in China were also reported. LAI was also evaluated by several 
authors (Table 1), with a RMSE as high as 1.99 (Wang et al., 2020) 
and as low as 0.1 (Wajid et al., 2021). The normalized RMSE and 
modelling efficiency in evaluating sowing-emergence, emergence-
jointing, jointing-flowering, and flowering-maturity period was 
44% & 0.36, 3.2% & 0.89, 12.4% & 0.45, 9% & 0.56, respectively 
(Wu et al., 2017). The other parameters like grain number (Yao et 
al., 2020), grain size (Liu et al., 2016), evapotranspiration (Zeng et 
al., 2021, Dar et al., 2017), soil water content (Zhou et al., 2019) 
and harvest index (Ishaque et al., 2020) were less often evaluated. 

The differences in grain yield were less than 2000 kg for 
most of the studies. However, some researchers reported a RMSE as 
large as 3550 kg (Patel et al., 2010) or 2200 kg (Mall et al., 2018). 
The model performance for simulating the grain yield was evaluated 
for a range of conditions such as irrigated and well fertilized (Lang 
et al., 2020), rainfed (Wang et al., 2020), drought (Yao et al., 
2020), water stress (Dar et al., 2017), nutrient stress (Wajid et al., 
2021), heat stress (Liu et al., 2016), different sowing dates (Shelia 
et al., 2019), different cultivars (Wang et al., 2020) and different 
management intensities (Zhang et al., 2019). 

From these studies, it can be concluded that the model 
performance was better under non- stress conditions as compared to 
under stress conditions (Patel et al., 2010) or for yield forecasting 
with future climates. He et al., (2013) conducted an experiment 
under different water stress levels and reported that the relative 
absolute error between simulated and observed grain yield ranged 
from 0.6-6.7% for different stress levels. Rizwan Shahid et al., 
(2020) conducted experiment with different sowing dates and N 
levels and reported that the percent deviation between simulated 
and observed grain and above ground biomass was in the range of 
14-24% and 11-18%, respectively.  Wang et al., (2020) conducted 
experiment with different sowing dates and cultivars of winter wheat 

DAR et al.

Fig. 1: The number of publications that evaluated different variables 
of the CSM-CERES-Wheat model.
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and reported a RMSEn of 5-8% for grain yield and 3-7% for above 
ground biomass. Zhou et al., (2019) evaluated different irrigation 
management practices and cultivars and reported that RMSEn for 
grain yield ranged between 8-11%. 

Soil water content was evaluated by Zhou et al., (2019) 
and they reported a RMSEn of 5-73%, which is not really considered 
to be a good performance of the model. Water use efficiency and 
crop evapotranspiration were evaluated by Si et al., (2021), Ji et al., 
(2014), and Dar et al., (2017) and they reported an error of 5-10% 
between the simulated and observed WUE and 8-14% between 
the simulated and observed ET. Ishaque et al., (2020) reported 
normalized RMSE of 7% for harvest index of grain and 9% for 
harvest index of nitrogen. 

The meta-analysis of the data revealed that the normalized 
RMSE for the variables that were evaluated with the CERES-Wheat 
model was 2.9% for anthesis (R2~0.99), 2.3% for physiological 
maturity (R2~0.99), 9.2% for LAI, 13.6% for grain yield (R2~0.85), 
and 17.6% for above ground biomass (R2~0.50) (Fig. 2 and 3). The 
number of days to anthesis and/or physiological maturity, grain 
yield and above ground biomass were evaluated with different 
statistical parameters to check the accuracy of the model (Table 1). 
However, there is a definite need for evaluation of other variables of 
the CERES-Wheat model.

CSM-CERES-Rice

The CERES-Rice model was evaluated for different 
phenological, growth, yield attributes, and yield in the different 
countries. The largest number of studies was reported for India 
(14), followed by China (7), Pakistan (4), and Sri Lanka (1). The 
variable that was evaluated by most of researchers (Fig. 4) was grain 

yield (22 studies), days to physiological maturity (19 studies), days 
to anthesis (13 studies), above ground biomass (9 studies), LAI 
(4 studies), panicle initiation and heading (3 studies), straw yield, 
harvest index, plant N uptake, soil moisture, evapotranspiration, 
soil water content, tops N, grain N, number of grains/m2 and test 
weight (1 study). Based on Fig. 4, it can be stated that among the 
phenological events, anthesis and maturity remained the top choice 
for evaluation of the CERES-Rice model. Similarly, grain yield and 
biological yield were evaluated in most of the studies. However, 
researchers should also consider other phenological events, growth, 
and yield attributes for model evaluation. Special attention should 
be given on evaluation of the soil and plant water and nutrient 
balance in the irrigation and fertilizer assessment studies. 

A total of 25 studies (Table S2) reported different 
statistical methods for model evaluation, with the largest number 
from India (15 studies), followed by China (7 studies), Pakistan 
(2 studies), and Sri Lanka (1 study). Most of the studies reported 
a RMSE of less than 5 between simulated and observed date of 
anthesis (Table S2). However, the differences were as small as 0.86 
days (Kadiyala et al., 2015) and as large as 11 days (Subba Rao et 
al., 2016). The normalized RMSE was less than 5% for most of the 
studies. However, Zhou et al., 2022 reported a RMSEn of 7.7% while 
evaluating the effect of elevation and precipitation under multiple 
planting dates and cultivars in China. The d-index for simulated date 
of anthesis ranged from of 0.16 (Kant et al., 2018) to 0.99 (Kadiyala 
et al., 2015). The number of days to maturity was less accurately 
predicted as compared to the number of days to anthesis. Although 
several studies reported a RMSE of less than 6 days (Anser et al., 
2020, Lv et al., 2018; Vysakh et al., 2016), but a RMSE greater than 
10 was also reported for several studies (Subba Rao et al., 2016; 
Guo et al., 2019; Goswami et al., 2016). The RMSEn ranged from 

Fig. 2: Simulated and observed days to anthesis and maturity for 
wheat across a range of experiments conducted in south 
Asia and China.

Fig. 3: Simulated and observed grain yield (GY) and above ground 
biomass (BY) for wheat across a range of experiments 
conducted in south Asia and China.
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Table 1:  Summary of the performance of the most commonly used DSSAT crop simulation models in south Asia and China during the last 
decade

Variable CSM Model RMSE Normalized
RMSE

R2

Anthesis, days CERES-Rice 3.2 3.8 0.98
CERES-Wheat 4.0 2.9 0.99
CERES-Maize 2.0 2.5 0.99
CROPGRO-Cotton 3.0 3.4 0.99

Maturity, days CERES-Rice 5.8 5.0 0.90
CERES-Wheat 4.1 2.3 0.99
CERES-Maize 3.0 2.3 0.99
CROPGRO-Cotton 6.1 3.2 0.99

LAI CERES-Rice 0.3 7.0 0.96
CERES-Wheat 0.4 9.2 0.75
CERES-Maize 0.7 16.0 0.98
CROPGRO-Cotton 0.3 6.1 0.84

Grain yield, kg CERES-Rice 514.8 10.5 0.93
CERES-Wheat 658.2 13.6 0.85
CERES-Maize 573.2 8.6 0.96
CROPGRO-Cotton 138.8 4.4 0.99

Above ground biomass, kg CERES-Rice 1078.3 10.8 0.84
CERES-Wheat 2069.6 17.6 0.50
CERES-Maize 1207.2 6.6 0.94
CROPGRO-Cotton 576.3 6.2 0.96

1% for a study utilizing different management strategies (Jha et al., 
2020) to 19% for a climate change study conducted by Goswami et 
al., (2016). Some studies involving the simulation of date of heading 
revealed that the RMSE varied from 1.2 to 4.3 days (Zhang and Tao, 
2013; Shamim et al., 2012). A climate change study conducted by 
Zhang et al., (2019) revealed that the heading date was simulated 
very well by the model, with a high d-index (0.98) and R2 (0.94) and 
a low RMSEn (2.2%). 

LAI is an important growth and yield contributing 
attribute and was evaluated by several researchers. The RMSE was 

reported in the range of 0.23 (Shamim et al., 2012) to 1.29 (Ahmad 
et al., 2013). A study conducted by Zhang et al., (2018) in China 
involving different cultivars and N rates found a R2 of 0.64 between 
the simulated and observed LAI. Kadiyala et al., (2015) evaluated 
the effect of different establishment methods under rainfed, aerobic, 
and flooded conditions, found a poor performance of the model in 
simulating the LAI with a high RMSEn (51%), and low d-index 
(0.62), and poor correlation (r=0.68). However, Ahmad et al., 
(2013) conducted an experiment with three planting densities and 
five irrigation regimes and found that the model performance in 
simulating the LAI was good with low a RMSE (1.1-1.3 and high 
d-value (0.96). Further studies are required to evaluate the model 
performance in this aspect under different management scenarios 
and environmental modifications. The yield attributes like number 
of grains m-2 and test weight were not evaluated in many studies. 
However, a study conducted by Shamim et al., (2012) utilizing four 
cultivars and 3 planting dates of aromatic rice in India found that 
the model performance was poor in simulating the number of grains 
(RMSE=1822; MAE=1363; %error=12). However, the Student’s 
t-test revealed that the difference was non-significant. Similarly, the 
test weight was underestimated by the model, but the differences 
were non-significant between the simulated and observed values. 

Grain yield was the trait that was most frequently 
evaluated for the CERES-Rice model as all research efforts are 
ultimately directed to increase the grain yield. Most of the studies 
showed a good performance of the model in simulating grain yield. 
The coefficient of determination, R2 was found to be as good as 
0.99 (Sudharsan et al., 2013), 0.97 by Debnath et al., (2018), and 
0.89 (Zhang et al., 2019; Lv et al., 2018) for simulating grain yield 
under varied irrigation and soil management practices. RMSE was 
the most used error to test the performance of the model. Anser et 

Fig. 4: The number of publications that evaluated different variables 
of the CSM-CERES-Rice model.
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al., (2020) used different adaptation strategies to study the impact of 
climate change and found a RMSE of 273 kg. To evaluate the effect 
of different rice cultivars and N management practices on yield 
and above ground biomass, Kant et al., (2018) reported a RMSE 
of 197-499 kg and 1350-1778 kg, respectively. Medhi et al., (2017) 
evaluated several planting dates and cultivars for the simulation of 
yield and found a close match between the simulated and observed 
grain yield (RMSE~245-387 kg). However, Kadiyala et al., (2015) 
reported a RMSE as high as 700 and 1000 kg while evaluating the 
effect of different rice establishment methods under rainfed, aerobic, 
and flooded systems on grain and straw yield, respectively.  Vysakh 
et al., (2016) conducted an experiment with different planting dates 
and rice cultivars and found that the RMSE between simulated 
and observed grain yield varied between 1039 and 1186 kg/ha. 
Several researchers have reported a RMSEn between simulated and 
observed grain yield that varies from 4% (Jha et al., 2020) to 18% 
(Kadiyala et al., 2015). Poor performance of the model in simulating 
above ground biomass was reported by Debnath et al., (2018), with 
high a RMSEn (35%). Soil moisture simulations were conducted by 
Kadiyala et al., (2015) and Shrivastava et al., (2018) under different 
management practices; they found that the RMSE for soil moisture 
ranged from 0.05 to 0.017 m3 m-3. For evapotranspiration, the RMSE 
of 60-100 mm was reported by Shrivastava et al., (2018). Student’s 
t-test was used by two researchers (Sudharsan et al., 2013; Shamim 
et al., 2012) to test the significance of the difference between the 
simulated and the observed results. However, they both found that it 
was non-significant, revealing the good performance of the CERES-
Rice model in simulating the growth and yield under different 
management scenarios. The meta-analysis of the data revealed that 
the RMSEn for the variables that were evaluated by the CERES-
Rice model was 3.8% for anthesis (R2~0.98), 5.0% for physiological 
maturity (R2~0.90), 7.0% for LAI, 10.5% for grain yield (R2~0.93), 
and 10.8% for above ground biomass (R2~0.84) (Fig. 5 and 6).

Although the different studies that were reviewed 

demonstrated that a well calibrated CERES-Rice model can be used 
effectively to simulate different phenological stages, growth and 
yield attributes, most researchers relied upon testing of the same 
variables (Table 1). There is a need to simulate other soil, water and 
nutrient related parameters and efficiencies, economics of the crop 
production technologies and management intensities. Moreover, the 
work on sensitivity analysis, sequential and rotation analysis, and 
climate change adaptation studies are lacking. Only a few studies 
reported on rotation and cropping system analysis, while none of the 
studies addressed the simulation of the impact of pests and diseases. 
This review may serve as the base for determining the research gaps 
in the use and application of the CERES-Rice model in South Asia 
and China.

CSM-CERES-Maize

A total of 35 studies simulated the different phenological, 
growth, and yield attributes to evaluate the performance of the 
CERES-Maize model (Fig. 7). The largest number of studies was 
from China (23), followed by India and Pakistan (5), Nepal and 
Bangladesh (1). The model has been evaluated for a wide range 
of environmental conditions and crop management practices. The 
variables that were evaluated in most of the studies was grain yield 
(32 studies), above ground biomass and anthesis (22 studies), 
maturity (20 studies), LAI (9 studies), soil water content and days 
to emergence (7 studies) and the number of grains/ear (3 studies). 
Two of the studies evaluated stover yield, harvest index, unit grain 
weight, end of grain filling, start of grain filling, time to harvest, 
and plant N uptake. Other attributes that were simulated in at least 
one study included test weight, soil total N, soil organic carbon, 
number of grains/m2, silking, water use, grain N uptake, beginning 
of maturity, beginning of flowering, number of leaves, N leaching, 
days to jointing, days to tasselling, soil nitrate N, water use 
efficiency, beginning of grain filling and economic optimum dose 
of N.  However, there is still a need to simulate other phenological 

Fig. 5: Simulated and observed days to anthesis and maturity for 
rice across a range of experiments conducted in south Asia 
and China.

Fig. 6: Simulated and observed grain yield (GY) and above ground 
biomass (BY) for rice across a range of experiments 
conducted in south Asia and China.
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events and yield attributes for evaluation of the performance of the 
CERES-Maize model. 

A total of 35 studies reported the different errors for 
evaluation of model performance. For most of the studies (Table 
S3), the difference between the simulated and observed date of 
anthesis was less than 5 days (Huang et al., 2021; Choudhary et 
al., 2021). However, the RMSE varied from 0 to 5.7 for a study 
evaluating the effect of different planting densities and cultivars in 
China (Zhang et al., 2022). Abbas et al., (2017) found a R2 of 0.88 
between simulated and observed date of anthesis while evaluating 
the potential impact of climate change and adaptation with different 
management practices such as planting depth, planting date, row 
spacing, and fertilizer application rates in Pakistan. An experiment 
conducted by Choudhary et al., (2021) in Bangladesh for simulation 
of yield and forecasting with 5 sowing dates and 3 maize hybrids, 
showed that the CERES-Maize model simulated anthesis well 
(R2~0.95, RMSE~0.63 days and d-value of 0.94). Rugira et al., 
(2021) found a good performance of the model in simulating the 
maturity for different irrigation and sowing management practices 
in China, with a RMSEn of less than 1.2%. Zhang et al., (2020) 
found a RMSE of six days between simulated and observed date 
of maturity under different Genotype x Management interactions 
for different agroecological zones in China. With respect to the 
emergence date, model performance was good with a RMSEn of 
less than < 1% (Rugira et al., 2021; Bai and Gao, 2021). 

Several studies found a much higher RMSEn for other 
variables. A study conducted by Shen et al., (2021) for simulating 
summer maize under different mulch treatments, found that 
the differences were as large as 17%. The differences between 
simulated and observed LAI were large, with a RMSEn as high as 
28% (Ran et al., 2020), 17% (Rugira et al., 2021) and 11% (Shen 
et al., 2021). For an experiment conducted to evaluate the in-season 
N recommendation strategy for three planting dates, Wang et al., 
(2012) found that the relative error was more than 20% between 

simulated and observed LAI and ranged from 6 to 12% for plant N 
uptake. Several studies evaluated model performance of CERES-
Maize for simulating the soil water content of the top layers and most 
of them found that the RMSEn was more than 10%. An optimization 
study of irrigation and fertilization in drip irrigated corn conducted 
by Fu et al., (2020), reported a RMSE of 12%. Similarly, Rugira et 
al., (2021) and Bai and Gao (2021), reported RMSE of 2 to 25% and 
11 to 18%, respectively. 

Model performance in simulating the above ground 
biomass and grain yield was studied by most of the researchers. The 
RMSE for grain yield was reported to be as small as 20 kg with 
RMSEn of 0.2% by Zhang et al., (2022) or more than 1000 kg (Yang 
et al., 2013). However, most of the studies have reported a RMSE 
of less than 500 kg (Rugira et al., 2021; Choudhary et al., 2021; 
Ahmad et al., 2020). An adaptation study conducted by Saddique 
et al., (2020) in China reported a good match with a RMSEn and 
RAE of 5 % and 4%, respectively.  Devkota et al., (2015) conducted 
an experiment in Nepal to determine yield gaps and adaptation 
measures. They found that the model performed well in simulating 
grain yield with a RMSE less than 450 kg and a R2 and d-value of 
0.89 and 0.86, respectively. Similarly, a good performance of the 
model in simulating the grain yield (RMSE~400 kg, R2~0.93, and 
d-value~0.99) was reported by Choudhary et al., (2021) for a study 
the performance of three maize hybrids under three sowing dates 
conducted in Bangladesh. 

Some researchers have used the Nash-Sutcliffe modelling 
Efficiency (NSME) to evaluate the performance of the CERES-
Maize model. A study conducted by Geng et al., (2018) reported 
that the model performance was good for simulating yield loss 
under drought stress with a NSE that ranged from 0.84 to 0.97. 
However, Ran et al., (2020) reported that the NSE (0.05-0.19) 
was poor for simulating the water consumption and yield using the 
two different ET options in CERES-Maize. Model performance in 
simulating above ground biomass was comparable to grain yield, 
with a RMSE of less than 300 (Choudhary et al., 2021) to more than 
3000 kg (Zhang et al., 2000; Ran et al., 2020). To evaluate model 
performance for simulating plant N uptake and economical optimum 
dose of N, Wang et al., (2021) conducted an experiment with three 
planting dates and six N rates in China; they reported that the model 
can be used for estimating the plant N uptake (R2~0.96, RMSE~11.4 
kg, RE~6%) and determining the economically optimum dose of 
N (R2~0.71, RMSE~21 kg). Water use efficiency was simulated 
by Rugira et al., (2021), who found that RMSEn ranged from 3 to 
8%, while the absolute deviation ranged from 0.7 to 1.5%. Bai and 
Gao (2021) reported that the CERES-Maize model can effectively 
simulate the start and end of grain filling with a RMSE of less than 
2 days and a RMSEn and MAE of less than 2%.  The RMSEn and 
NSE for simulating the soil nitrate N ranged from 14 to 31% and 
from 0.79 to 0.96, respectively. Song and Jin (2020) conducted an 
experiment to simulate the grain weight under water stress conditions 
and reported that the model performed well in simulating the unit 
grain weight (ARE~3%, RMSEn~4%). The model performance was 
also found good in simulating the number of days to tasseling (Chen 
et al., 2020), cumulative N leaching (Fu et al., 2020), number of 
leaves on the main stalk (Babel et al., 2019), the number of days to 
silking (Wang et al., 2015), soil organic carbon (Yang et al., 2013), 

Fig. 7:  The number of publications that evaluated different 
variables of the CSM-CERES-Maize model.
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the number of grains/cob and the number of grains/m2 (Devkota et 
al., 2015), and stover yield (Lone et al., 2020). However, there are 
very few studies that reported all these traits at the same time. The 
meta-analysis of the data revealed that the RMSEn for the variables 
that were evaluated with the CERES-Maize model was 2.5% for 
anthesis (R2~0.99), 2.3% for physiological maturity (R2~0.99), 
16.0% for LAI, 8.6% for grain yield (R2~0.96), and 6.6% for above 
ground biomass (R2~0.94) (Fig. 8 and 9; Table 1).

CSM-CERES-Sorghum

A total of five studies were carried out on sorghum 
using the CERES-Sorghum model. However, the model was only 
evaluated for three of the studies (Table S4a). Grain yield was 
evaluated in all three studies, while the anthesis and maturity dates 
were evaluated in only one study (Sandeep et al., 2018), while 
phenological observations, and growth and yield attributes were not 
validated. There is, therefore, a need to conduct more research with 
the CERES-Sorghum modelling for grain sorghum in south Asia 
and China. A study conducted by Sandeep et al., (2018) to evaluate 
the impact of climate change on sorghum productivity in India and 
its adaptation strategies, found that the CERES-Sorghum model 
was good in simulating the anthesis (RMSE<4 days), maturity 
(RMSE~4 days) and grain yield RMSE=320-755 kg). Chadalavada 
et al., (2022) found that model performance was good in simulating 
grain yield (RMSE~300 kg and d-index~0.88) while evaluating the 
impact of climate change on post rainy season sorghum in India. 
Different plant spacings and N rates adaptation strategies were used 
by Singh et al., (2014) to quantify the potential benefits of drought 
and heat tolerance for rainy season sorghum; he found that the model 
performed good in simulating the grain yield with a RMSE~370 
kg and a d-index~0.9. However, there is a need to evaluate model 
performance for simulating other growth and yield associated traits.

CSM-CERES-Millet

The CERES-Millet model has been used to simulate 

the phenology and grain yield of pearl millet in two studies, one 
each in Pakistan and India (Table S4b). Asmat Ullah et al., (2019) 
conducted an experiment to test the model performance in simulating 
the anthesis and maturity, LAI, biomass, and grain yield under arid 
and semi-arid environments of Pakistan. The model performance 
was found to be good as revealed by a low RMSE, a high d-index, 
and a high coefficient of determination. A multilocational trial with 
different cultivars conducted by Singh et al., (2017) showed that the 
grain yield simulated with the CERES-Millets model was good with 
a RMSE that was less than 400 kg and d-index of 0.97. Pearl millet 
is an important crop for both semi-arid and arid environments, and, 
therefore, more studies are needed for evaluation and application of 
the model.

CSM-CROPGRO-Soybean

A total of three studies, including two from China and 
one from India used the CROPGRO-Soybean model to simulate 
phenology and grain yield. Grain yield was simulated in all three 
studies, while physiological maturity and soil water content were 
simulated in two studies (Table S4c). The remainder of the variables, 
such as the time of flowering (Wei et al., 2021), soil temperature 
(Liu et al., 2013), and total above ground biomass were evaluated 
in only one study (Walikar et al., 2018). The performance of the 
CROPGRO-Soybean model was found to be good in simulating 
phenology and final yield. Wei et al., (2021) found that the model 
performance was good in simulating the flowering and maturity 
dates for soybean under drought conditions with an absolute error of 
less than 5% and RMSEr of ~3%.  

Model performance in simulating the soil water content 
varied between the two experiments conducted in China. Liu et al., 
(2013) conduced an experiment on modelling crop yield, soil water 
content and soil temperature under conventional and conservation 
tillage and reported that the RMSEn for soil water content was in the 
range of 16-46% and the mean error was 0-0.8 cm3/cm3. However, 

Fig. 8: Simulated and observed days to anthesis and maturity for 
maize across a range of experiments conducted in south 
Asia and China.

Fig. 9:  Simulated and observed grain yield (GY) and above ground 
biomass (BY) for maize across a range of experiments 
conducted in south Asia and China.
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Wei et al., (2021) found an absolute relative error of 2 to 8% and 
a RMSEr of 6% between the simulated and observed soil water 
content in a soybean drought risk quantification study. For studying 
the impact of projected climate on yield of soybean under different 
sowing dates, Walikar et al., (2018), found the model performance 
was good in simulating grain and biological yield with a RMSE of 
less than 500 and less than 600, respectively. The d-index varied 
between 0.2-0.9 for grain yield and 0.7-0.9 for the above ground 
biomass. In a separate study, Liu et al., (2013) reported that the 
simulated and observed yield differences ranged from -91 to 408 kg, 
both under and overestimating the grain yield under different tillage 
treatments. Modelling studies on soybean that involve different 
management intensities, cultivars and climate impact are lacking 
in the region, although it is a very important oil and protein crop. 
Therefore, more research is needed in the coming years.

CSM-CROPGRO-Peanut

There were only four studies that were reported that 
used the CROPGRO-Peanut model for simulation of phenology, 
growth, and yield of peanut. The pod yield was simulated by all four 
studies, followed by the flowering and first pod date (three studies). 
Biomass and shell weight were only evaluated by one study each 
while LAI, maturity date, first seed date, harvest index, and shelling 
percentage were only evaluated in one study (Table S4d). Different 
statistical errors were computed to quantify the performance of the 
CROPGRO-Peanut. A study conducted by Halder et al., (2017) 
to evaluate the effect of different sowing dates and phosphorus 
fertilizer application, found that model performance was good for 
the simulation of the dates of anthesis, first pod, and first seed, 
harvest index, and shelling percentage. However, the error for the 
simulation of grain yield was higher (RMSE ~ 470 kg and RMSEn 
~ 23%). 

The relative error for the simulation of the different 
phenological stages such as dates for anthesis, first pod, first seed, 

and maturity were in the range of 5-13% for a study conducted 
by Parmar et al., (2013) to evaluate the effect of sowing dates on 
different peanut cultivars. LAI, shell weight, and pod yield were 
also simulated well as indicated by low RMSE. Due to the lack 
of sufficient studies with the CROPGRO-Peanut model in south 
Asia and China, the performance of the model cannot be judged. 
Therefore, more studies are needed given the importance of the 
peanut crop in the region.

CSM-CROPGRO for other pulse crops: Pigeonpea, Chickpea, 
and Urd

Only one study was reported from India regarding the 
use of the DSSAT model for simulating the phenology and yield 
of different maturity groups of pigeonpea under the climate change. 
Yadav et al., (2021) found that the RMSE for anthesis and maturity 
varied between one and eight days. The RMSEn was about 5% 
between the simulated and the observed phenology dates. Grain 
yield was well simulated with a RMSE of less than 300 kg and 
RMSEn of less than 7%. Although pigeonpea is an important Kharif 
pulse crop for India, crop modeling studies are very much limited 
and need to be increased in the near future. 

One study each was conducted on chickpea by Yadav et 
al., (2016) and one on urd by Kumar et al., (2012) in India. However, 
the evaluation of model performance was not reported in these 
studies. ICRISAT was involved in the development of the original 
CSM-CROPGRO-Chickpea model based on the PNUTGRO model. 
This has resulted in several papers that were published prior to the 
period of this analysis (Singh et al., 1999a, 199b).

CSM-CROPGRO-Cotton

A total of seven studies, including four in Pakistan, two 
in China, and one in India used the CROPGRO-Cotton for the 
simulation of cotton phenology, growth, and seed cotton yield. The 
dates for anthesis and physiological maturity were simulated in all 
studies, seed cotton yield and total dry matter in six studies, and 
LAI in five studies. Other parameters such as the number of days to 
emergence, plant height, number of seeds/m2, unit weight, dry boll 
weight, threshing percentage, harvest index, and soil water content 
were simulated in one study each (Fig. 10). Different statistical 
errors were used to test the performance of the model (Table S5). 
The studies conducted by Arshad et al., (2017) for simulation of 
cotton yield under different nitrogen levels and planting dates and 
Amin et al., (2017) for optimizing the phosphorus use in two cotton 
cultivars in Pakistan, showed that the model performance was good 
in simulating the anthesis and maturity with a RMSE of less than 2 
days. However, Arshad Awan et al., (2021) found a higher percent 
difference and error between the simulated and observed anthesis 
(>9%) and maturity dates (>6%) while evaluating the impact of 
climate change on cotton. The model performed well in simulating 
LAI (RMSE~0.3), total dry matter (RMSE~960 kg), and seed cotton 
yield (RMSE~180 kg). 

In a study conducted by Li et al., (2019) regarding 
simulation of cotton growth and soil water content under plastic 
mulch drip irrigation, the simulation of LAI and soil water content 
by the CROPGRO-Cotton model was good with a high coefficient 

Fig. 10: The number of publications that evaluated different 
variables of the CSM-CROPGRO-Cotton model.
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of determination and d-index as well as a low RMSE. Mishra et al., 
(2021) conducted a study on the effect of three different sowing 
dates on four cotton cultivars; they found that the fit between 
model simulated and observed seed cotton yield (RMSE<130 kg 
and d-index~0.97) and the total dry matter (RMSE~700 kg and 
d-index~0.98) were good. Habib ur Rahman et al., (2018), found 
that the relative error for the simulated number of seeds/m2, unit 
weight, dry boll weight and threshing percentage was 5, 3, 5 and 
1 percent, respectively, with the overall conclusion that model 
performance can be considered good. The responses of cotton 
growth and yield to pre-planting soil moisture with the CROPGRO-
Cotton model for a mulched drip irrigation system was studied by 
Wang et al., (2020). This study found that the model did not perform 
well in simulating the phenology and yield of cotton. The RMSE 
for anthesis and maturity was more than 4 days, while for above 
ground biomass and seed cotton yield it was more than 2000 and 
760 kg, respectively. The RMSEn between simulated and observed 
dry matter and seed cotton yield ranged from 10-31%. 

The meta-analysis of the data revealed that the RMSEn 
for the variables that were evaluated for CROPGRO-Cotton model 
was 3.4% for anthesis (R2~0.99), 3.2% for physiological maturity 
(R2~0.99), 6.1% for LAI, 4.4% for seed cotton yield (R2~0.99), and 
6.2% for above ground biomass (R2~0.96) (Fig. 11 and 12; Table 1). 
There is a need for more extensive crop modelling studies on cotton 
for different environmental conditions, crop management practices, 
and future climate scenarios because of its importance as the main 
fiber crop across the globe. 

CSM-CANEGRO-Sugarcane

Two studies were found in the literature that were 
conducted during the past ten years and that used the CANGRO-
Sugarcane (Table S6a). The studies included the simulation of 
days to emergence, the dates for peak tillering and physiological 

maturity, LAI, fresh cane yield, stalk fresh mass, and sucrose mass. 
A study conducted by Singh et al., (2018) on the evaluation of the 
CANEGRO-Sugarcane model for phenology and yield attributes of 
four cultivars of sugarcane grown for three different sowing dates 
in India, found that the model performance was good in simulating 
the emergence date, peak tillering date, physiological maturity date, 
LAI, and fresh cane yield as indicated by the different statistical 
indicators including a low vale for RMSE and MBE and a high 
value for the d-index. However, the RMSE between the simulated 
an observed stalk fresh mass and sucrose mass reported by Bhengra 
et al., (2016) for a study conducted with 10 sugarcane cultivars was 
much higher for both model calibration and evaluation. More studies 
are required to check the performance of the CANEGRO-Sugarcane 
model for simulating phenology, growth, and yield of sugarcane for 
different environmental conditions and management practices.

CSM-OILCROP-Sunflower

Two studies were found in the literature that evaluated 
the OILCROP-Sunflower model in Pakistan (Table S6b). The two 
studies included the number of days to anthesis and maturity, LAI, 
total dry matter, achene yield, oil content, soil water content, leaf N 
content, and crop ET. Awais et al., (2017) conducted an experiment 
on simulating the water and nitrogen productivity of sunflower for 
four irrigation levels and three N rates. They reported that the mean 
error in simulating anthesis and maturity was less than 6%, while 
the error between the simulated and observed total dry matter and 
achene yield was up to 18%. LAI was underestimated by 25% or 
overestimated by 6%. The RMSE for soil water content was 0.05% 
and for crop ET was 33 mm. Nasim et al., (2016) also found a 
good model performance for the evaluation of the performance of 
sunflower hybrids grown under different environmental conditions. 
The difference between simulated and observed anthesis and 
maturity dates, total dry matter and oil content was less than 7%, 
while achene yield (R2=0.65-0.94) and LAI (d=0.55-0.97) were also 

Fig. 12: Simulated and observed seed cotton yield (GY) and above 
ground biomass (BY) across a range of experiments 
conducted in south Asia and China.
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cotton across a range of experiments conducted in south 
Asia and China.
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well simulated by the model.

CSM-SUBSTOR-Potato

Two studies were reported (Table S6c) regarding the 
use of the SUBSTOR-Potato for simulating the tuber initiation, 
maturity, and yield. Naz et al., (2022) reported a good performance 
of the model in simulating tuber initiation and maturity.  Goswami 
et al., (2018) found that the tuber yield was well simulated with a 
RMSE of 3800 kg and a d-index of 0.97. Although potato is one 
of the important commercial crops grown throughout Asia, studies 
that include crop modelling are very limited. Therefore, in depth 
research is needed to simulate and evaluate potato phenology, 
growth, and yield for different management and environmental 
conditions, as well as the impact of climate change and potential 
adaptation measures.

REFLECTION AND THE WAY FORWARD

During the last 11 years from 2010 to early 2022, many 
studies have been conducted in south Asia and China for evaluation 
and application of the different crop modules of the Cropping System 
Model of DSSAT under various environmental conditions and for 
many different management practices. In this Meta Analysis we 
reviewed a total of 206 publications that were published regarding 
the use of the DSSAT simulation models for different crops during 
this period and that are available in the Web of Science database. 
Most of the studies were conducted with the CERES modules for 
maize, wheat, and rice, as well as some for sorghum and pearl 
millet. Among the CROPGRO modules, most of the studies were 
conducted for peanut, soybean, and cotton. Other crops included 
sunflower, sugarcane, and potato. The number of days to anthesis 
and maturity, LAI, grain yield, and biological yield were the most 
common traits used for model calibration and evaluation. The 
models were tested for different environmental conditions, ranging 
from irrigated to rainfed, arid, semiarid, and monsoonal climate and 
under different management practices, climate change assessments, 
and adaptation measures. The models performed well under most 
of the conditions in simulating the growth and yield attributes. 
However, the performance of the models was better under non-
stress environments with sufficient inputs and management. 
For most of the studies, the difference between the observed and 
simulated days to anthesis and maturity was less than 5 days. Grain 
yield was simulated with an RMSE of less than 1000 kg/ha, while 
biological yield was simulated with a RMSE of less than 1500 kg/ha 
for most of the studies. Although the evaluation with other growth 
attributes such as the number of grains, harvest index, grain weight, 
pod weight, and shelling percentage were limited, the studies that 
included these traits reported a good performance of the individual 
CSM crop modules. 

Until now there are very limited data available with 
respect to soil water content, nitrogen and water uptake, N leaching, 
nutrient use efficiency, and water use efficiency. Therefore, more 
research is needed for evaluation of these traits. In addition, most 
of the studies only focused on model calibration and evaluation, 
while modeling for management of current agronomic challenges 
such as resource use efficiency or for adaptation measures were 
very limited. The use and application of the DSSAT crop models 
for fruit and vegetable crops is lacking and must be taken seriously 

given the importance of these crops for food and especially nutrition 
security as well as a cash crop for small-holder farmers. Modelling 
work on crop rotations, sequence analysis, and economic analysis 
are very much limited and are needed in the near future, especially 
for environmental and economic sustainability applications of 
the crop models. The state-of-the in-crop modeling was recently 
reviewed by Vasco Silva and Giller (2020) as part of the iCROPM 
2020 International Crop Modeling Symposium (Hoogenboom et al., 
2020), showing that there are still many gaps as well as opportunities 
for systems analysis and crop modeling to have an impact.

This Meta Analysis shall serve as a review for the work 
that has been done with the DSSAT crop simulation models during 
the last decade and will serve as a roadmap for further research on 
crop model development, calibration, evaluation, and applications, 
especially with respect to south Asia and China. Although DSSAT 
is not the only crop modelling platform that has been used by 
researchers in the region, it is surely the most widely used one 
along with APSIM crop modeling platform. This paper shall guide 
researchers regarding the different adaptation practices that can be 
developed under future climate change. This review focuses on only 
one region of Asia. Therefore, more studies are required for other 
parts of the region and the world to obtain a better understanding on 
the use of crop models for the development of both economically 
and environmentally sustainable agricultural practices for food and 
nutrition security under climate change and uncertainty.
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