
Evapotranspiration (ET) represents the combination of water 
loss through evaporation from the bare soil and surfaces of open 
water bodies as well as transpiration from plants (Allen et al., 1998; 
Obalum et al., 2011a; Vinukollu et al., 2011; Guillevic et al., 2019). 
In the environmental system, ET is a key part of the water balance 
representing the dominant mechanism driving the hydrological 
cycle (Byun et al., 2014; Badgley et al., 2015; Baik and Choi, 2015; 
Tadesse et al., 2015). It is also an essential land surface mechanism 
in climatology, terrestrial energy and carbon cycles (Du and Sun, 
2012; Yuan et al., 2012; Zhu et al., 2013). Beven (2001) noted that, 
in many environments, ET is a greater proportion of the catchment 

water balance than stream discharge, though this is largely influenced 
by the vegetation. The ET could influence groundwater recharge 
especially because its variation with vegetation is not just about the 
density of the vegetation and associated degree of shielding the soil 
from evaporative losses, but also about vegetation interception of 
rainwater (Ouyang et al., 2019). Total loss by ET may account for 
about three quarters of all precipitation in a year, even in humid 
regions (Knapp, 2002), and sometimes may be more than the annual 
precipitation particularly in semi-arid or arid regions. 

At the global scale, ET is the most outgoing water flux in the 
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Accurate estimation of evapotranspiration (ET) is essential both at the regional and local scales for many management tasks. Numerous methods 
for estimating ET with various complexities and combinations exist which may be broadly classified as direct and indirect methods. Information 
on ET estimation uncertainties cannot be overemphasized and ignoring them can misguide decision-making in management of water resources. 
This study reviews the uncertainties in ET estimations and suggests ways to reduce them. Identified in this study are uncertainties associated with 
ET methods and input data, uncertainties due to spatial and temporal scales, and uncertainties based on region. Many studies have the ET method 
related uncertainties. The ground-based techniques generally used as a standard for comparing other methods have considerable uncertainty (10–
30%) associated with the input components. The errors from the input reflect in the estimated ET output irrespective of the model used. Datasets 
from satellite products are based on in-situ network forcing as well as on model’s estimation and remote sensing (RS), and they are prone to 
errors as a result of differences in in-situ measurements, scale, sensor calibration and basics of model theory and parametrization. Generally, 
uncertainties associated with ET were found to vary temporally. Also, homogeneity and stability of potential evapotranspiration (PET) were 
worse in space than in time, indicating that the temporal distribution of PET was more uniform and stable compared to spatial distribution. Some 
ET RS products showed less uncertainty in coarse resolution and comparatively high uncertainty in fine resolution. This study identified five 
ways to minimize uncertainties in ET estimations. Minimizing uncertainty in ET estimation will definitely improve planning, management and 
use of water resources especially where accurate estimations are required. 
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hydrologic cycle and together with precipitation determines water 
availability (Long et al., 2014; Rajib et al., 2018). Generally, ET 
may be categorized into actual evapotranspiration (AET) and 
potential evapotranspiration (PET) which reflect crop water demand 
and meteorological water demand, respectively, the latter of which 
reflects the upper limit of crop water demand. The AET is the actual 
water loss from natural environment (Allen et al., 1998; Buttafuoco 
et al.,  2010; Verstraeten et al., 2008; Baik and Choi, 2015; Wang 
et al., 2015; Liaqat and Choi, 2017; Khan et al., 2018; Yang et al., 
2019). The PET represents the utmost capacity of evaporation across 
the terrestrial surface when water is not limiting. In croplands of 
monoculture where there are reliable data for the other components 
of soil water balance such as runoff and drainage, it is possible to 
measure AET (Obalum et al., 2011b, c). 

 When the emphasis is on crop production, PET is called 
reference ET (ETo), commonly defined as the ET from well-watered 
hypothetical 8-15 cm tall green grass of uniform height, actively 
growing and shading the ground (Allen et. al., 1998; Obalum and 
Azuka, 2021). The concept of ETo examines the evaporative power 
of the atmosphere at a specific location regardless of crop type, 
developmental stages of the crop, soil factors and management 
practices (Buttafuoco et al., 2010). Climatic attributes are mostly 
the factors affecting ETo and therefore it can be calculated using 
weather data. The PET determines the upper limit of AET (Wang 
et al., 2017a). On the other hand, AET links the energy and water 
balances by designating energy in hydrosphere, geosphere and 
biosphere to reflect the synergy among land surface systems and 
climate change (Chen, 2017). According to Yang et al. (2019), AET 
is the most important parameter for describing hydrological cycle. 

 Since water loss through ET is enormous, accurate 
estimation of it is essential for many tasks, e.g., proper management, 
planning and adequate use of water resources, drought predictions, 
irrigation scheduling, weather forecasting and crop yield estimation, 
etc. both at the regional and local scales (Khan et al., 2018; 
Sorensson and Ruscica, 2018). However, the ET quantification 
is usually influenced by many hydro-meteorological factors and 
heterogeneous land surface characteristics over space and time (Chen 
et al., 2018). The complicated ecosystem as well as the large variety 
of physical processes and their interactions makes it challenging 
to accurately quantify ET. Numerous methods exist for estimation 
of ET with various degrees of complexities and combinations. 
However, the complicity of climate change, varied environmental 
conditions, land surfaces, and their temporal and spatial variability 
usually lead to qualitative and quantitative uncertainties in the ET 
estimations (Khan et al., 2018). Yu et al. (2016) noted that the main 
driver of water budget variability in hydrologic simulation is ET 
uncertainty. Improved knowledge on quantification of ET would 
definitely help in reducing these uncertainties especially in future 
climate projections. Therefore, this study reviews the uncertainties 
in ET estimations and predictions and suggests ways to minimize 
the uncertainties. 

EVAPOTRANSPIRATION ESTIMATION TECHNIQUES

 Various methods for estimating ET exist ranging from 
point scale observations or ground based techniques with fine 
temporal resolution to satellite remote sensing (RS) products and 

process modelling with coarse spatial and temporal resolution 
(Sorensson and Ruscica, 2018). The ET techniques can be broadly 
grouped into two namely direct and indirect methods.

Direct method 

 The ET can be directly measured using lysimeters, 
scintillometers, energy balance by eddy covariance towers or Bowen 
ratio systems, etc. (Hupet et al., 2004; Courault et al., 2005; Gowda 
et al., 2007; Yuan et al., 2010; Morton et al., 2013; Zhu et al., 2013; 
Gu et al., 2018). Previously, ET estimations to support agriculture 
were done using only pan evaporation method and weighing 
lysimeters, though these methods are still widely used. According 
to Vinukollu et al. (2011), eddy covariance system for measuring 
water and other fluxes was developed in the 1970s. Now there are 
many eddy covariance flux towers globally for measurements of 
water flux, carbon dioxide and energy between the atmosphere and 
terrestrial surface. For wider coverage of this system, there are flux 
networks (under global program called FLUXNET) in different 
regions such as AsiaFlux, OzFlux, AmeriFlux, EuroFlux, etc. 
(Vinukollu et al., 2011). Eddy covariance systems measure fluxes 
on the order of few hundred meters of upwind distance (Lee et al., 
2015; Valayamkunnath et al., 2018). Non-closure of the energy 
budget on the order of 20 to 30% is a limitation associated with 
the eddy covariance tower (Vinukollu et al., 2011); thus, they are 
frequently forced to achieve the closure (Jung et al., 2010; Wohlfahrt 
et al., 2009). Also, the footprint of eddy covariance systems changes 
with meteorological conditions especially in a heterogeneous land 
surface (Yee et al., 2015). Scintillometer is another method for 
measuring ET; it can measure path integrated fluxes up to 10 km 
and meteorological conditions have small impact on its footprint 
(Yee et al., 2015; Liu et al., 2011). According to Valayamkunnath 
et al. (2018), scintillometers are most suitable for the accurate error 
estimation of satellite RS, for both measured and simulated sensible 
heat fluxes due to its path lengths that are larger compared to 
footprints of EC systems. These ground-based techniques generate 
AET datasets at local fields and are usually considered to have high 
accuracy over homogeneous areas; however, there are measurement 
errors and scaling issues associated with these methods (Khan 
et al., 2018; Byun et al., 2014). They cannot acquire regional or 
global ET because the measurement is on point-scale usually over a 
homogenous land surface (Valayamkunnath et al., 2018). According 
to Valayamkunnath et al. (2018), large-aperture scintillometer, 
however, has potential for measuring area-averaged fluxes from 
heterogeneous land surfaces. This information is yet to be widely 
validated. 

Indirect method 

 Direct measurement of ET is difficult and time consuming. 
Use of recent advanced equipment is very expensive. Alternatively, 
mathematical models based on meteorological data are usually 
employed to estimate ET (Yang et al., 2019). The indirect methods 
calculate ET using various existing models with meteorological data 
from weather sensors or the satellite RS method (Chen et al., 2018). 
Numerous models for estimating PET range from single weather 
variables (e.g., air temperature, radiation or relative humidity) to 
equations that combine two or more variables. Typical examples of 
such models include (Thompson, 1999; Wang et al., 2017a; Phad et 
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al., 2019; Sarma and Bharadwaj, 2020; Bakr et al., 2021): 

i. temperature-based models (e.g., Blaney-Criddle, Hamon, 
Hargreaves, Ivanov, Khrrufa, Thornthwaite, etc.); 

ii. radiation-based models (e.g., Christiansen, Doorenbos-Pruitt, 
Jensen-Haise, Priestley-Taylor, Turc, etc.); and

iii. combination methods (e.g., FAO-56 Penman-Monteith, 
Hargreaves-Samani, Penman, Ritchie’s, Schendel, Makkink, 
Jensen-Haise, Tabari, etc.).

 Among these examples of the categories of ET models, 
the FAO-56 Penman-Monteith equation (equation 1) which is 
classified as a radiation and aerodynamic combination-based 
(energy-balanced) method has been widely tested and assumed 
to be the most suitable for various climatic conditions because of 
its physically-based characteristic (Xu et al., 2006; Wang et al., 
2017a; Sarma and Bharadwaj, 2020). In a study comparing different 
methods of ET estimation somewhere in India, Makkink’s model 
was found to give values closest to those obtained by FAO-56 
Penman-Monteith model (Bhat et al., 2017), suggesting that the 
combination methods involving both temperature and radiation 
appear to give more reliable estimates of ET than those than involve 
either. The FAO-56 Penman-Monteith model often regarded as the 
standard method of ET estimation is (Wang et al., 2017a):
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 where H is the total energy available for ET (H » Rn) 
(Beven, 2001);  Rn is net radiation, ra is the density of the air (kg 
m–3), l = 2.47 x 106 J kg–1, Cp is the specific heat capacity of the air 
(MJ kg–1 °C–1), E is the ET rate (mm s–1), ez is the vapour pressure 

(kPa), and γ  is the psychrometric constant (kPa °C–1) (FAO 56 
document), De is the slope of the saturation vapour pressure versus 
temperature curve, es (T) is the saturated vapour pressure (kPa), ra, is 
the aerodynamic resistance (sm-1) and rc canopy resistance (sm-1). 

 However, the FAO-56 Penman-Monteith method requires 
proper measurements of multiple meteorological variables, 
including net radiation and soil heat flux that are rarely measured 
in common agronomy-oriented meteorological installations and this 
prevents its use in data-sparse areas. These limitations have made 
popular the use of either radiation- or temperature-based methods 
that require less climatic data than the Penman-Monteith equation. 
With respect to reference evapotranspiration (ETo), it has been 
demonstrated that radiation-based models could be developed with 
just solar radiation and air temperature data in sub-humid climatic 
conditions of developing countries where availability and reliability 
of weather data remains a problem, and that such local models could 
be give more reliable estimates under these conditions than other 
more popular radiation-based models (Tomar, 2016).  

Satellite-based ET estimation

 Sparse ET monitoring networks globally restrict 
quantification of ET over larger areas. Satellite RS method is one of 
the indirect methods for estimating ET spatially from point to large 

landscape (Byun et al., 2014; Wang et al., 2016; Wang et al., 2007). 
Recently, hydrological variables are monitored spatially using multi-
temporal and multi-spatial sensors. Obviously, spatial resolution is 
gaining more ground at the expense of lower temporal coverage 
(Mccabe and Wood, 2006). In the last few decades, efforts have 
been made to combine ground-based methods with advancements 
in satellite RS technique to produce global AET datasets. Satellite 
RS technology has some advantages; it ignores other complex 
hydrological variables while estimating ET but instead derives 
residual energy balance directly from pixel up to regional scale 
(Liaqat and Choi, 2017). The RS generally increases the user’s 
capacity to estimate ET spatially and at different scales (Glenn et 
al., 2007). Its algorithms are based on (i) simple atmosphere-land 
exchange models together with RS data and (ii) statistical and 
empirical methods on RS vegetation index and surface temperature 
methods (Glenn et al., 2007; Sorensson and Ruscica, 2018). The RS 
approaches for estimating AET are based on (a) residual method 
of surface energy balance and (b) ground-based methods combined 
with RS data, e.g., the physically-based Penman-Monteith method 
with MODerate resolution Imaging Spectroradiometer (MODIS, 
e.g., MOD16) imagery and the Priestly-Taylor equation with 
Advanced Very High Resolution Spectroradiometer (AVHRR), 
Breathing Earth System Simulator (BESS) model (Liaqat and Choi, 
2017; Chang et al., 2018; Du and Sun, 2012; Mu et al., 2011; Jiang 
and Ryu, 2016), and Global Land Evaporation and Amsterdam 
Model (GLEAM) (Khan et al., 2018; Martens et al., 2016; Paca et 
al., 2019). Measurements from stations are scaled to large landscape 
units using RS vegetation indices (VIs). These indices such as 
normalized difference vegetation index (NDVI)) or leaf area index 
together with surface meteorological data are used with surface 
resistance in the Penman-Monteith equation to estimate ET globally. 

 Other residual energy balance algorithms that are equally 
used include SEBS (surface energy balance system), SEBAL 
(surface energy balance algorithm for land) and METRIC (mapping 
evapotranspiration at high resolution with internalized calibration) 
(Liaqat and Choi, 2017; Long et al., 2014; Jin et al., 2011; Byun et al., 
2014; Morton et al., 2013). These algorithms are used to determine 
AET spatially and temporally but they differ from one another 
because of their complex formulations and structural design. The 
SEBAL and METRIC are image-processing algorithms, but their 
major disadvantage is inability to optimize extreme hydrological 
events (dry and/or wet scaling) which often leads to errors in the final 
outputs at large scale (Liaqat and Choi, 2017). Morton et al. (2013) 
assessed METRIC uncertainty due to calibration and its automation 
for computing ET over agricultural areas and found that uncertainty 
was low for fields with high ET and high for fields with low ET. 
It was also noted that automated methods can produce first-order 
ET results that are close to the one estimated by manual methods. 
On the other hand, SEBS does not demand pre-defined dry and/
or wet scaling but it requires huge amounts of vegetation attributes 
from satellite imagery and meteorological inputs for its implantation 
and estimation of aerodynamic resistance. Results obtained by 
Byun et al. (2014) support the application of RS-based ET models 
across heterogeneous as well as homogeneous regions; however, 
these authors noted that more studies are needed to accurately 
parameterize roughness height across areas of heterogeneous 
and tall vegetation to enhance SEBS’s performance. Also, ET is 
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estimated as a residual in the water budget equation using gravity 
recovery and climate experiment (GRACE) (Long et al., 2014). The 
GRACE gives information on differences in gravity field that are 
controlled particularly by water distribution differences. It is used to 
calculate spatial change in total water storage (such as groundwater 
storage, surface water and soil moisture) for better understanding of 
water budget (Long et al., 2014). 

Land surface models

 Land surface models (LSMs) are part of global climate 
models (GCMs) that simulate land surface processes using 
provided meteorological conditions as inputs and produce outputs 
such as latent heat flux, sensible heat flux, etc. (Abramowitz et 
al., 2008). The LSMs are based on principles of biophysical and 
biogeochemical processes. With climate models or observed 
atmospheric data, LSMs can estimate ET of previous and current 
climate. The ET at scales such as grid to global scales can be obtained 
using LSMs which include mosaic, noah, variable infiltration 
capacity (VIC), community land model (CLM), sacramento soil 
moisture accounting (SAC), etc. (Rodell et al., 2004; Chen, 2017; 
Zhang et al., 2017; Khan et al., 2018). In addition, global land data 
assimilation system (GLDAS) employs advanced and sophisticated 
LSMs and data assimilation technique to generate land surface 
fluxes. The GLDAS runs multiple LSMs and provide continuous 
datasets of AET globally (Khan et al., 2018). It uses new ground 
and space-based observation systems, and applies constraints in 
two ways: (i) forcing the LSMs with observation meteorological 
fields hence avoiding atmospheric model biases; and (ii) using data 
assimilation approaches thereby restricting unrealistic model states 
that use observations of land surface states (Rodell et al., 2004). 

UNCERTAINTIES IN ET ESTIMATIONS

ET estimation methods and input data uncertainty 

 ET estimation methods described above and their 
respective input data present some level of uncertainties when 
modelling PET or AET. Some studies have demonstrated varying 
levels of uncertainties among ET models when simulating ET (Chen 
et al., 2014; Thompson et al., 2014; Xu et al., 2018). Chen et al. 
(2014) compared eight ET models (three process-based models 
and five empirical models) with the purpose of giving guidance 
on choosing and improving ET methods. They found that the ET 
simulated using the eight models varied between 61 and 80% when 
compared with 23 eddy covariance towers in and around the study 
region. Xu et al. (2018) assessed the relative uncertainty of upscaled 
regional ET from five machine learning methods (artificial neural 
network, random forest, deep belief network, Cubist and support 
vector machine) and noted that random forest algorithm had 
lowest relative uncertainty compared to other methods. Similarly, 
Thompson et al. (2014) assessed the PET-related uncertainty in 
climate change impacts on river flow using six PET alternative 
methods in MIKE SHE models namely Priestley–Taylor, Linacre, 
Blaney–Criddle, Hargreaves–Samani, and Penman and Hamon. 
Uncertainty associated with PET method was confirmed in the low 
and high flows direction. They further noted that PET method-related 
uncertainty under climate variability is considerably less compared 
to global climate models (GCMs) uncertainty. Wang et al. (2015) 

also obtained similar results after using different ET formulations 
and different input data to determine if there was potential 
uncertainty in projection of future ET change. Their findings show 
that there is still uncertainty, the approximate performance adopted 
in simulating general trends notwithstanding. 

 The ground-based techniques considered to have high 
accuracy and which are usually used as a standard for comparing 
other methods have considerable level of uncertainty (Westerhoff, 
2015). According to Glenn et al. (2007), moisture flux towers and 
micrometeorological stations which are ground-based techniques 
that provide continuous measurements of AET or PET have 
uncertainty of 10–30%. When data from these ground-based 
techniques are used, the errors in the input usually propagate towards 
the output of the calculated ET irrespective of the model used 
(Buttafuoco et al., 2010). Buttafuoco et al. (2010) noted that the ET 
prediction quality depends on the uncertainties of the data used in 
the analysis. Sometimes uncertainty associated with the input data 
could be contributed by faulty measurement equipment or sensors. 
Chen et al. (2018) assessed the performance of solar radiation 
and leaf-area-index sensors on ET model uncertainty for indoor 
cultivation and found that sensors were main cause of uncertainty. 
They further noted that there is need to improve environmental 
variables measurement to enhance predictive capacity of ET models 
for greenhouse environmental control and irrigation management. 

 Satellite products utilize ET ground-based estimates. 
Datasets from satellite products are based on in-situ network 
forcing as well as model’s estimation and RS. These are subject to 
errors associated with scale and underlying model assumptions and 
parametrization, in-situ measurements itself and sensor calibration 
(Khan et al., 2018). This is in spite of the fact that global satellite 
products contain more noise compared to ground-based estimates 
(Westerhoff, 2015). Khan et al. (2018) evaluated uncertainty 
characterization of AET satellite dataset (GLEAM, GLDAS and 
MOD16) with eddy-covariance flux data over nine Asia Flux sites 
using an extended triple collocation method. Their results showed 
that random error on an average of 1.5–5.5 mm/8 day came from in-
situ AET and this reduced the accuracy of other related datasets. Of 
the three satellite datasets (GLEAM, GLDAS and MOD16), GLEAM 
performed better consistently with least relative and absolute 
uncertainties across forest surfaces compared to grassland surfaces 
and rice paddy. The GLDAS had similar errors like GLEAM across 
grassland surfaces and rice paddy whereas MOD16 had relatively 
high uncertainties across all vegetation types. Furthermore, based 
on height of vegetation, all datasets had large uncertainties (> 
25%) for low vegetation than the tall canopies (Khan et al., 2018). 
Long et al. (2014) also assessed uncertainty in ET output from two 
RS-based products (AVHRR and MODIS), four LSMs (Mosaic, 
Noah, VIC, and SAC in NLDAS-2) and GRACE satellites using 
three cornered hat method. Uncertainties in ET are low in LSM 
ET, moderate in AVHRR or MODIS and high in GRACE. Even 
the improved MODIS Et algorithm by Mu et al. (2011) still needs 
more improvement, though accuracy was enhanced with uncertainty 
within the 10–30% of reported uncertainties in ET measurements.  

The responses of ET to climate change are different among climate 
models because of different parameterizations which connect surface 
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radiation and soil moisture to ET (Sorensson and Ruscica, 2018). 
Current climate models do not have the capacity to estimate PET 
directly (Wang et al., 2017a); however, the data can be incorporated 
with some indirect ET estimation methods. Consequently, PET is 
exposed to uncertainty because of lots of existing formulae and 
different input data reliabilities when modelling hydrological 
response in relation to future climate change. Wang et al. (2017a) 
evaluated the differences in runoff projection by four different 
PET estimation approaches namely radiation-based empirical 
Priestley-Taylor equation along with good reliable downscaled data, 
physically based Penman-Monteith model with less dependable 
input variables, and simple Hamon equation (temperature-based) 
with the most dependable downscaled variable. The magnitudes of 
PET over the period 2021–2050 were slightly different for summer 
and spring seasons. The discrepancy in response to future runoff as 
well as diverse change for summer and spring months showed there 
was PET uncertainty especially in some basins. Also, uncertainties 
in numerical weather prediction reanalysis data limit the capacity 
to accurately simulate the terrestrial water system (Rawlins et al., 
2006). Rawlins et al. (2006) estimated PET using a hydrological 
model forced with three climate datasets to understand the impact 
of uncertainties in numerical weather prediction reanalysis data on 
simulated water fluxes. They found a high degree of uncertainty in 
climate data as well as the water fluxes obtained from model drivers. 
Thus, there is need for proper examination of model requirements 
as well as the biases in forcing data because the uncertainties in the 
input data would definitely propagate to the model output translating 
into a huge problem at the long run. 

Spatial and temporal uncertainty

 Quantifying the spatial and temporal patterns of ET 
is important for understanding the local, regional and global 
hydrological cycle but this remains considerably uncertain (Pan et 
al., 2014; Wagle et al., 2016). According to Badgley et al. (2015), 
ET trend at watershed and regional scales have little agreement. 
Limited long-term hydrological datasets have made it difficult to 
fill this knowledge gap. Uncertainty associated with this ET trend 
at both scales is contributed to by the diverse models and limited 
inputs data used in estimating ET. In some situations, inadequacy of 
data necessitates the utilization of simple ET methods that require 
few meteorological inputs data which invariably adds uncertainty to 
estimated ET (Hosseinzadehtalaei et al., 2016). Hosseinzadehtalaei 
et al. (2016) assessed uncertainty in ET projections for future runoff 
and water availability using seven simple radiation and temperature-
based methods (Jensen-Haise, Blaney-Criddle, Makkink, Schendel, 
Turc, Hargreaves-Samani, and Tabari) against standard Penman-
Monteith FAO 56 method on the basis of 12 general circulation 
model outputs from the coupled model inter-comparison project 
phase 5 for four future greenhouse gas scenarios (RCP2.6, RCFP4.5, 
RCP6.0 and RCP8.5). Their findings showed a lack of agreement on 
the amount of ET obtained from the seven ET methods and that 
uncertainty associated with ET methods is more for daily than 
monthly ET estimates. Similarly, Badgley et al. (2015) assessed the 
uncertainty in global ET estimates attributable to each class of input 
forcing datasets using one of Priestly–Taylor JPL models together 
with 19 different combinations of forcing data which included 
three meteorological datasets, three net radiation products and three 

vegetation index products. They found that uncertainty is more for 
monthly average terrestrial ET compared to the annual estimates, 
while also noting greatest discrepancy between input forcing 
arises from choice of net radiation dataset. In their evaluation of 
differences in runoff projection by four PET methods, Wang et al. 
(2017a) obtained similar monthly patterns of results among the 
four methods. On annual time scale, Liu et al. (2016) presented a 
worldwide assessment of nine ET products: 3 LSM simulations, 3 
reanalysis-based and 3 diagnostic products against ETo estimated 
using the water balance method over 23 years across 35 global 
river basins and found no significant intra-category discrepancy in 
the estimated annual ET. Almost all products relatively estimated 
the ET annual means but systematically underestimated the inter-
annual variability and could not estimate ETo trend adequately. The 
uncertainties recorded in the nine ET products may be attributed 
to the discrepancies in the forcing datasets and model structural 
limitations (Liu et al., 2016). Generally, uncertainty associated 
with ET varies temporally. On the same time scale, however (e.g., 
monthly), the pattern for some ET methods might be similar but 
differ in magnitude. 

 The RS from satellites seems to be the only possible way 
for estimating the ET spatial distribution across larger landscape 
units. However, this RS still has some issues that are yet to be 
resolved like spatial scale mismatch among coarser meteorological 
forcing and fine vegetation data as well as cloud-free images, 
therefore resulting in large uncertainties in ET estimations (Long 
et al., 2014). In the quest to reduce uncertainty due to scale, Wang 
et al. (2016) evaluated a new technique called multi-scale thermal 
infrared RS in combination with three-temperature model, but not 
without uncertainty. Wang et al. (2017b) carried out uncertainty 
analysis of PET and its influencing factors in Heihe River and 
found that homogeneity and stability of PET were worse in space 
than in time, indicating that temporal distribution of PET was more 
uniform and stable compared to spatial distribution. They noted 
that, similar to mean temperature, wind speed and sunshine hours, 
PET increased spatially from the south of Heihe River to the north, 
and was opposite to relative humidity. Similarly, spatial regression 
analyses of seasonal satellite-derived ET by Tadesse et al. (2015) 
indicate comparatively poor yearly spatial relation for all the crop 
growing zones of their study. 

 The LSMs is another satellite-based ET estimation 
method that can forecast ET continuously both spatially and 
temporally; however, it goes with greater uncertainties compared 
with in situ observations or RS retrievals (Chen, 2017). These 
uncertainties could be as a result of errors in the large-scale 
meteorological data sets used to force LSMs, shortcomings in the 
model structure, errors due to unrepresentative model parameters, 
incomplete model parameterization, etc. (Garrigues et al., 2015; 
Chen, 2017).  According to Garrigues et al. (2015), although LSMs 
were originally developed to work together with hydrological or 
atmospheric models across large landscape, their spatial integration 
is based on coarse-resolution of ca. 1–10 km maps of parsimonious 
parametrization. Surface parameters drive a large part of LSM 
uncertainties and explain most discrepancies between models 
(Garrigues et al., 2015). From the ET uncertainty analysis done by 
Long et al. (2014) using four LSMs (two RS based products and 
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GRACE satellites), there is a balance between uncertainty and 
spatial resolution with high uncertainty in the fine-resolution of ca. 
1–8 km and low uncertainty in the coarse-resolution LSM ET of 
approximately 14 km and relative. 

 According to Dong and Dai (2017), studies conducted 
between 1982 and 2010 have reported considerable changes in 
terrestrial ET and the causes of these changes remain unclear. 
Because of that, relative contributions of internal and external 
climate variability to recent ET changes were examined using three 
global terrestrial ET datasets and multi-model ensembles mean ET. 
Dong and Dai (2017) found that there are large discrepancies of 
the ET estimates, in terms of their trend and variability among the 
three datasets. This shows large uncertainties in the estimated recent 
decades of global terrestrial ET. 

ET uncertainty based on region

 Not much has been done on quantifying ET uncertainty 
based on region. Since factors affecting ET vary among different 
regions, it is worthwhile knowing how ET uncertainty varies 
among these regions. Sorensson and Ruscica (2018) examined the 
uncertainties of a set of ET products (RS, land surface models and 
reanalysis) across climatologically distinct zones of South America. 
The results showed that the metrics exhibited different spatial 
patterns of uncertainty with maximum relative uncertainties of 
mean annual ET occurring in dry region. Also, Soria (2013) assessed 
the relevance of the predictive uncertainty in PET calculations 
using Monte Carlo approach in order to improve surface water 
balance calculations in remote high-elevation catchments. They 
found that the variations in the PET affected the water balance in 
Andean mountainous systems under arid conditions more than their 
humid counterparts. The uncertainty could have been propagated 
by the imperfect PET measuring network. Thus, it is important to 
characterize the uncertainty analysis of these error sources in order 
to use ET datasets with greater confidence in water resources and 
hydro-meteorological applications (Khan et al., 2018).

QUANTIFICATION OF ET UNCERTAINTY

 Quantification of ET uncertainty, also known as 
uncertainty analysis (Chen et al., 2018), is done in different ways 
but it can be broadly grouped into two; quantification through the 
statistical analysis of observations, and quantification through other 
information about the ET measurement. The statistical analysis 
used ranges from simple observations such as means and standard 
deviations to complex approaches. Apart from these statistical 
methods, other approaches include three-cornered hat method 
(Long et al., 2014; Xu et al., 2018), extended triple collocation 
(Khan et al., 2018), and Monte Carlo analysis (Buttafuoco et al., 
2010; Soria, 2013). The three-cornered hat method (also known as 
Grubb’s estimator) is based on theory that observational errors are 
normally distributed. Its advantage is that no prior knowledge on 
ET value is needed. Extended triple collocation employs a statistical 
technique with temporally collocated and spatially coincident 
datasets to derive random error (Khan et al., 2018). Monte Carlo 
analysis samples factors from their distribution and with assumption 
that the factors are independent (Saltelli et al., 2008). In addition 
to the above methods, Chen et al. (2018) adopted the ISO GUM 

(International Organization for Standardization, Guides to the 
expression of Uncertainty in Measurement) concept in studying the 
effect of sensors on the uncertainty of the two ET models. The ISO 
GUM method evaluates the uncertainty using statistical analysis of 
observations and other information about the measurement.

WAY FORWARD

 Minimizing uncertainty in ET estimation will definitely 
improve planning, management and use of water resources. This 
study suggests five ways to minimize uncertainty in ET estimation: 
1) increasing ground-based measurement stations; 2) minimizing 
measurement errors; 3) sensitivity assessment of ET dataset; 4) 
enhancements of model physics and global forcing data; and 5) 
hybrid approach with RS products with lower uncertainty in order 
to constrain the uncertainty.

 Increasing ground-based measurement stations should 
not be done at the expense of accuracy. For eddy covariance 
observations, for instance, instrumentation at all sites across the eddy 
covariance network should be standardised and all variables must 
be acquired and measured using standardised procedure (Rebmann 
et al., 2018). Extension of eddy covariance network should focus 
not only on new ecosystems but also on spatial replications of 
measurements. Large-scale ET is usually estimated from observed 
measurements which are still problematic because of sparse network 
of observed stations and the high spatial heterogeneity and temporal 
variability of ET. Recent research has tried to address the problem 
associated with observed measurements by coming up with global 
ET products which include RS-based products, reanalysis outputs, 
LSM simulations, and the estimates based on empirical upscaling of 
in situ observations (Liu et al., 2016). However, global and regional 
applications of these ET products have been constrained due to the 
lack of reference observations (Liu et al., 2016). Increasing ground-
based measurement stations would definitely make more ET data 
available especially in data sparse regions. Also, some ET models 
including physically based models use RS data to determine ET. 
According to Glenn et al. (2007), errors in predicting ET by both 
empirical and micrometeorological data methods need to be reduced 
to at least 10% or less especially for highly sensitive applications 
that require accurate wide-area ET estimates. 

 Therefore, improving ground methods for measuring 
ET and minimizing measurement errors will help in accurate 
quantification of ET which can also be scaled up to larger 
landscapes. However, recent advances in global network, 
FLUXNET, have tried to improve ground measurement which 
enables researchers to evaluate terrestrial ET at different time scales 
across many areas of multiple vegetation types. According to Liu et 
al. (2016), when evaluating ET at regional scales, eddy-covariance 
measurements must be treated with caution because of their sparse 
spatial coverage, relatively short period and lack of energy balance 
closure. Alternatively, ET products can also be compared with the 
ET obtained from the terrestrial water budget for closed basins 
(Liu et al., 2016). Depending on region and nature of study to be 
conducted, characteristics of individual data sets are also important, 
suggesting that sensitivity assessment of ET dataset would help in 
minimizing uncertainty in ET estimation (Sorensson and Ruscica, 
2018). 
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 Some studies have revealed large uncertainties associated 
with current ET models, pointing to the need for further validation 
and improvements in ET models which can be achieved by 
reviewing various ET model structures, critical model parameters 
as well as associated component estimates (Chen et al., 2014). 
According to Liu et al. (2016), enhancements of model physics 
and global forcing data will definitely improve the calculation and 
predictions of global ET thereby reducing uncertainty. Long et 
al. (2014) also recommended hybrid approach that combines the 
strengths of satellite-based and LSMs products in order to reduce 
ET uncertainties.

CONCLUSION

 There is need to enhance estimates of ET for improved 
practical applications and to better understand the water budget 
and its relation with climate change both on spatial and temporal 
scales. Accurate quantification of ET is difficult but improvement 
can be made on the existing methods despite the heterogeneity of 
the land surface and some factors such as climate, soil properties, 
plant biophysics and topography influencing such estimations. The 
two broadly classified methods could be improved on or slightly 
modified in order to reduce uncertainties in ET estimations. The 
ones identified in this study are uncertainties due to ET methods and 
input data, uncertainty associated with spatial and temporal scale 
and uncertainty based on region. Studies reviewed confirm that 
there are PET method-related uncertainties and that errors in the 
input data contribute to these uncertainties. Despite effort towards 
approximating the performance of the ET methods in simulating 
general trends in some studies, there is still PET method related 
uncertainty. The recent need to monitor hydrological variables from 
space should also consider the uncertainties associated with scale. 
Notably, uncertainty associated with ET varies temporally just as 
homogeneity and stability are worse in space than in time. Some 
ET RS products show low uncertainty in the coarse-resolution and 
relative to high uncertainty in the fine-resolution. More efforts 
should be geared towards reducing ET uncertainty further especially 
in this era of increased spatial resolution for proper planning, 
management and efficient use of water resources. The above 
suggested ways would further reduce the uncertainties associated 
with ET estimation methods and scale for better management of 
water resources and other associated applications.

Conflict of Interest Statement: The author(s) declare(s) that there is 
no conflict of interest.

Disclaimer: The contents, opinions, and views expressed in the 
research article published in the Journal of Agrometeorology are the 
views of the authors and do not necessarily reflect the views of the 
organizations they belong to.

Publisher’s Note: The periodical remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

REFERENCES

Abramowitz, G., Leuning, R., Clark, M. and Pitman, A. (2008). 
Evaluating the performance of land surface Models. J. 

Clim., 21: 5468–5481.

Allen, R.G., Luis, S.P., Raes, D. and Smith, M. (1998). Crop 
Evapotranspiration (Guidelines for Computing Crop 
Water Requirements). FAO Irrigation and Drainage 
Paper No. 56. Rome, Italy.

Badgley, G., Fisher, J.B., Jiménez, C., Tu, K.P. and Vinukollu, 
R. (2015). On Uncertainty in Global Terrestrial 
Evapotranspiration Estimates from Choice of Input 
Forcing Datasets. J. Hydrometeorol., 16: 1449–1456.

Baik, J. and Choi, M. (2015). Evaluation of geostationary satellite 
(COMS) based Priestley – Taylor evapotranspiration. 
Agric. Water Manage., 159: 77–91.

Bakr, D.I., Al-Khalidi, J. and Hadi, A.S. (2021). Comparison of some 
mathematical models to calculate evapotranspiration in 
contrasting regions of Iraq. Environment Asia, 14(2): 40–
50. DOI: 10.14456/ea.2021.15 

Beven, K.J. (2001). Rainfall-Runoff Modelling: The Primer. 
England: John Wiley and Sons Ltd.

Bhat, S., Pandit, B., Dar, M.D., Ali, S.R., Jan, R. and Khan, S. 
(2017). Comparative study of different methods of 
evapotranspiration estimation in Kashmir Valley. J. 
Agrometeorol., 19(4): 383–384. https://doi.org/10.54386/
jam.v19i4.618

Buttafuoco, G., Caloiero, T. and Coscarelli, R. (2010). Spatial 
uncertainty assessment in modelling reference 
evapotranspiration at regional scale. Hydrol. Earth Syst. 
Sci., 14: 2319–2327.

Byun, K., Liaqat, U.W. and Choi, M. (2014). Dual-model 
approaches for evapotranspiration analyses over homo- 
and heterogeneous land surface conditions. Agric. Forest 
Meteorol., 197: 169–187.

Chang, Y., Qin, D., Ding, Y., Zhao, Q. and Zhang, S. (2018). A 
modified MOD16 algorithm to estimate evapotranspiration 
over alpine meadow on the Tibetan Plateau, China. J. 
Hydrol., 561: 16–30.

Chen, Y., Xia, J. and Liang, S. et al. (2014). Comparison of 
satellite-based evapotranspiration models over terrestrial 
ecosystems in China. Remote Sens. Environ., 140: 279–
293.

Chen, S. (2017). A generalized Gaussian distribution based 
uncertainty sampling approach and its application in 
actual evapotranspiration assimilation. J. Hydrol., 552: 
745–764.

Chen, L., Chen, J. and Chen, C. (2018). Effect of environmental 
measurement uncertainty on prediction of 
evapotranspiration. Atmosphere, 9: 1–13.

Courault, D., Seguin, B. and Olioso, A. (2005). Review on estimation 
of evapotranspiration from remote sensing data : From 

EZENNE et al 



180 March 2023

empirical to numerical modeling approaches. Irrigation 
Drainage Syst., 19: 223–249.

Dong, B. and Dai, A. (2017). The uncertainties and causes of the 
recent changes in global evapotranspiration from 1982 to 
2010. Clim. Dynamics, 49: 279–296. 

Du, J.P. and Sun, R. (2012). Estimation of evapotranspiration for 
ungauged areas using MODIS measurements and GLDAS 
data. In Procedia Environ. Sci., 12: 1718–1727. 

Garrigues, S., Olioso, A. and Calvet, J.C. et al. (2015). Evaluation 
of land surface model simulations of evapotranspiration 
over a 12-year crop succession: Impact of soil hydraulic 
and vegetation properties. Hydrol. Earth Syst. Sci., 19: 
3109–3131.

Glenn, E.P., Huete, A.R., Nagler, P.L., Katherine, K. and Brown, P. 
(2007). Integrating remote sensing and ground methods to 
estimate evapotranspiration. Critical Rev. Plant Sci., 26: 
139–168.

Gowda, P.H., Colaizzi, P.D., Evett, S.R., Howell, T.A. and Tolk, J.A. 
(2007). Remote sensing based energy balance algorithms 
for mapping ET: current status and future challenges. 
Transactions of the ASABE, 50(5): 1639–1644.

Gu, C., Ma, J., Zhu, G., Yang, H., Zhang, K., Wang, Y. and Gu, 
C. (2018). Partitioning evapotranspiration using an 
optimized satellite-based ET model across biomes. Agric. 
Forest Meteorol., 259: 355–363.

Guillevic, P.C., Olioso, A., Hook, S.J., Fisher, J.B., Lagouarde, 
J. and Vermote, E.F. (2019). Impact of the revisit 
of thermal infrared remote sensing observations on 
evapotranspiration uncertainty - a sensitivity study using 
ameriflux data. Remote Sens., 11: 573.

Hosseinzadehtalaei, P., Tabari, H. and Willems, P. (2016). 
Quantification of uncertainty in reference 
evapotranspiration climate change signals in Belgium. 
Hydrol. Res., 48(5): 1391–1401.

Hupet, F., Bogaert, P. and Vanclooster, M. (2004). Quantifying 
the local-scale uncertainty of estimated actual 
evapotranspiration. Hydrol. Processes, 18: 3415–3434. 

Jiang, C. and Ryu, Y. (2016). Multi-scale evaluation of global gross 
primary productivity and evapotranspiration products 
derived from Breathing Earth System Simulator (BESS). 
Remote Sensing Environ., 186: 528–547.

Jin, Y., Randerson, J.T. and Goulden, M.L. (2011). Continental-
scale net radiation and evapotranspiration estimated using 
MODIS satellite observations. Remote Sensing Environ., 
115(9): 2302–2319.

Jung, M., Reichstein, M. and Ciais, P. et al. (2010). Recent decline 
in the global land evapotranspiration trend due to limited 
moisture supply. Nature, 467: 951–954.

Khan, M.S., Liaqat, W.U., Baikb, J. and Choi, M. (2018). Stand-
alone uncertainty characterization of GLEAM, GLDAS 
and MOD16 evapotranspiration products using an 
extended triple collocation approach. Agric. Forest 
Meteorol., 252: 256–268. 

Knapp, B.J. (2002). Elements of Geographical Hydrology. Taylor 
& Francis, UK

Lee, S.H., Lee, J.H. and Kim, B.Y. (2015). Estimation of turbulent 
sensible heat and momentum fluxes over a heterogeneous 
urban area using a large aperture scintillometer. Adv. 
Atmos. Sci., 32(8): 1092.

Liaqat, U.W. and Choi, M. (2017). Accuracy comparison of remotely 
sensed evapotranspiration products and their associated 
water stress footprints under different land cover types in 
Korean peninsula. J. Cleaner Prod., 155: 93–104.

Liu, S.M., Xu, Z.W., Wang, W.Z., Jia, Z.Z., Zhu, M.J. and Wang, 
J.M. (2011). A comparison of eddy–covariance and large 
aperture scintillometer measurements with respect to the 
energy balance closure problem. Hydrol. Earth Syst. Sci., 
15: 1291–1306.

Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., Li, X. (2016). 
A worldwide evaluation of basin-scale evapotranspiration 
estimates against the water balance method. J. Hydrol., 
538: 82–95. 

Long, D., Longuevergne, L., and Scanlon, B.R. (2014). Uncertainty 
in evapotranspiration from land surface modeling, remote 
sensing, and GRACE satellites. Water Resources Res., 50: 
1131–1151.

Martens, B., Miralles, D.G., Lievens, H. (2016). GLEAM v3: 
Satellite-based land evaporation and root-zone soil 
moisture. Geosci. Model Dev.,  5: 1–36.

Mccabe, M.F. and Wood, E.F. (2006). Scale influences on the 
remote estimation of evapotranspiration using multiple 
satellite sensors. Remote Sensing Environ., 105: 271–285.

Morton, C.G., Huntington, J.L., Pohll, G.M., Allen, R.G., 
Mcgwire, K.C. and Bassett, S.D. (2013). Assessing 
calibration uncertainty and automation for estimating 
evapotranspiration from agricultural areas using METRIC. 
J. Am. Water Resources Assoc., 49(3): 549–562.

Mu, Q., Zhao, M. and Running, S.W. (2011). Improvements to a 
MODIS global terrestrial evapotranspiration algorithm. 
Remote Sensing Environ., 115(8): 1781–1800.

Obalum, S.E., Ezenne, G.I., Watanabe, Y., and Wakatsuki T. (2011a). 
Contemporary global issue of rising water scarcity for 
agriculture: the quest for effective and feasible soil 
moisture and free-water surface conservation strategies. 
J. Water Resource Protect., 3(3): 166–175.

Obalum, S.E., Amalu, U.C., Obi, M.E. and Wakatsuki, T. (2011b). 
Soil water balance and grain yield of sorghum under 

An overview of uncertainties in evapotranspiration estimation techniques



181Vol. 25 No. 1

no-till versus conventional tillage with surface mulch at 
the derived savanna zone of southeastern Nigeria. Exp. 
Agric., 47(1): 89–109. 

Obalum, S.E., Igwe, C.A., Obi, M.E. and Wakatsuki, T. (2011c). 
Water use and grain yield response of rainfed soybean to 
tillage-mulch practices in southeastern Nigeria. Scientia 
Agricola, 68(5): 554–561. 

Obalum, S.E. and Azuka, C.V. (2021). Quantitative dimensions to 
systematic implementation of irrigation technology in 
tropical African agriculture. In: Handbook of Practical 
Agriculture: A Production of the Faculty of Agriculture, 
University of Nigeria, Nsukka, 2nd ed, pp 108–119), 
Eze SC, Obalum SE (Eds), University of Nigeria Press 
Limited, Nsukka, Nigeria

Ouyang, Y., Grace, J.M., Jin, W., Obalum, S.E., Zipperer, W.C. and 
Huang, X. (2019). Estimating impact of forest land on 
groundwater recharge in a humid subtropical watershed of 
the Lower Mississippi River Alluvial Valley. J. Hydrol.: 
Regional Stud., 26(2019): 100631.

Paca, V.H., Espinoza-dávalos, G.E., Hessels, T.M., Moreira, D.M., 
Comair, G.F. and Bastiaanssen, W.G.M. (2019). The 
spatial variability of actual evapotranspiration across the 
Amazon River Basin based on remote sensing products 
validated with flux towers. Ecol. Processes, 8(6): 2–20.

Pan, S., Tian, H., Dangal, S.R.S., Yang, Q., Yang, J., Lu, C., Tao, 
B., Ren, W. and Ouyang, Z. (2014). Responses of global 
terrestrial evapotranspiration to climate change and 
increasing atmospheric CO2 in the 21st century. Earth’s 
Future, 3: 15–35.

Phad, S.V., Dakhore, K.K. and Sayyad, R.S. (2019). Comparison 
of different methods for estimation of reference 
evapotranspiration at Parbhani, Maharashtra. J. 
Agrometeorol., 21(2): 236–238. DOI: https://doi.
org/10.54386/jam.v21i2.243

Rajib, A., Merwade, V., Yu, Z. (2018). Rationale and efficacy of 
assimilating remotely sensed potential evapotranspiration 
for reduced uncertainty of hydrologic models. Water 
Resources Res., 54: 4615–4637. 

Rawlins, M.A., Frolking, S., Lammers, R.B., Vörösmarty, C.J. 
(2006). Effects of uncertainty in climate inputs on 
simulated evapotranspiration and runoff in the Western 
Arctic. Earth Interactions, 10(18): 18 pp. 

Rebmann, C., Aubinet, M. and Schmid, H. et al. (2018). ICOS eddy 
covariance flux-station site setup: a review. Int. Agrophy., 
32: 471-494. 

Rodell, M., Houser, P.R., Jambor, U. (2004). The global land data 
assimilation system. Am. Meteorol. Soc., 85(3): 381–394. 

Saltelli, A., Ratto, M. and Campolongo, F. (2008). Global Sensitivity 
Analysis. The Primer. England: John Wiley & Sons Ltd.

Sarma, A. and Bharadwaj, K. (2020). Determination of crop-
coefficients and estimation of evapotranspiration 
of rapeseed using lysimeter and different reference 
evapotranspiration models. J. Agrometeorol., 22(2): 172–
178. https://doi.org/10.54386/jam.v22i2.158

Sorensson, A.A. and Ruscica, R.C. (2018). Intercomparison and 
Uncertainty Assessment of Nine Evapotranspiration 
Estimates Over South America. Water Resources Res., 54: 
2891–2908.

Soria, F. (2013). Relevance of the uncertainty in evapotranspiration 
inferences for surface water balance projections in 
mountainous catchments. In Proceedings of H02, IAHS-
IAPSO-IASPEI Assembly, Gothenburg, Sweden (Vol 360, 
pp. 39–44).

Tadesse, T., Senay, G.B., Berhan, G., Regassa, T. (2015). Evaluating 
a satellite-based seasonal evapotranspiration product and 
identifying its relationship with other satellite-derived 
products and crop yield : A case study for Ethiopia. Int. J. 
Appl. Earth Observ. Geoinfor., 40: 39–54.

Thompson, J.R., Green, A.J. and Kingston, D.G. (2014). Potential 
evapotranspiration-related uncertainty in climate change 
impacts on river flow : An assessment for the Mekong 
River basin. J. Hydrol., 510: 259–279.

Thompson, S.A. (1999). Hydrology for Water Management. 
Netherlands: AA Balkema and Rotterdam, Netherlands.

Tomar, A.S. (2016). Performance of radiation-based reference 
evapotranspiration equation developed for Indian sub-
humid conditions. J. Agrometeorol., 18(1): 76–82. https://
doi.org/10.54386/jam.v18i1.905

Valayamkunnath, P., Sridhar, V., Zhao, W. and Allen, R.G. (2018). 
Intercomparison of surface energy fluxes, soil moisture, 
and evapotranspiration from eddy covariance, large-
aperture scintillometer, and modeling across three 
ecosystems in a semiarid climate. Agric. Forest Meteorol., 
248: 22–47.

Verstraeten, W.W., Veroustraete, F. and Feyen, J. (2008). Assessment 
of evapotranspiration and soil moisture content across 
different scales of observation. Sensors, 8: 70–117.

Vinukollu, R.K., Wood, E.F., Ferguson, C.R. and Fisher, J.B. (2011). 
Global estimates of evapotranspiration for climate studies 
using multi-sensor remote sensing data : Evaluation of 
three process-based approaches. Remote Sens. Environ., 
115(3): 801–823.

Wagle, P., Gowda, P.H., Xiao, X., Kc, A. (2016). Parameterizing 
ecosystem light use efficiency and water use efficiency 
to estimate maize gross primary production and 
evapotranspiration using MODIS EVI. Agric. Forest 
Meteorol., 222: 87–97.

Wang, K., Wang, P., Li, Z., Cribb, M., Sparrow, M. (2007). A 

EZENNE et al 



182 March 2023

simple method to estimate actual evapotranspiration from 
a combination of net radiation , vegetation index , and 
temperature. J. Geophysical Res., 112: 1–14.

Wang, W., Xing, W., Shao, Q. (2015). How large are uncertainties in 
future projection of reference evapotranspiration through 
different approaches? J. Hydrol., 524: 696–700.

Wang, Y.Q., Xiong, Y.J., Qiu, G.Y., and Zhang, Q.T. (2016). Is scale 
really a challenge in evapotranspiration estimation ? A 
multi-scale study in the Heihe oasis using thermal remote 
sensing and the three-temperature model. Agric. Forest 
Meteorol., 230–231: 128–141.

Wang, W., Li, C., Xing, W. and Fu, J. (2017a). Projecting the potential 
evapotranspiration by coupling different formulations and 
input data reliabilities: The possible uncertainty source 
for climate change impacts on hydrological regime. J. 
Hydrol., 555: 298–313.

Wang, J.H., Qi, G.P., Kang, Y.X., Zhu, X.H., Ma, Y.L. and 
Shi, X.W. (2017b). Uncertainty analysis of potential 
evapotranspiration and its influencing factors in Heihe 
River. Chinese J. Ecol., 36(1): 172–180.

Westerhoff, R.S. (2015). Using uncertainty of Penman and Penman 
– Monteith methods in combined satellite and ground-
based evapotranspiration estimates. Remote Sensing 
Environ., 169: 102–112. 

Wohlfahrt, G., Haslwanter, A., Hortnagl, L. et al. (2009). On the 
consequences of the energy imbalance for calculating 
surface conductance to water vapour. Agric. Forest 
Meteorol., 149: 1556–1559.

Xu, C., Gong, L., Jiang, T., Chen, D. and Singh, V.P. (2006). Analysis 
of spatial distribution and temporal trend of reference 
evapotranspiration and pan evaporation in Changjiang 
(Yangtze River) catchment. J. Hydrol., 327(1–2): 81–93.

Xu, T., Guo, Z., Liu, S. (2018). Evaluating different machine 

learning methods for upscaling evapotranspiration from 
flux towers to the regional scale. J. Geophy. Res.: Atmos., 
123(16): 8674–8690.

Yang, Y., Chen, R., Song, Y., Han, C., Liu, J. and Liu, Z 
(2019). Sensitivity of potential evapotranspiration to 
meteorological factors and their elevational gradients in 
the Qilian Mountains , northwestern China. J. Hydrol., 
568(320): 147–159.

Yee, M.S., Pauwels, V.R.N. and Daly, E. et al. (2015). A comparison 
of optical and microwave scintillometers with eddy 
covariance derived surface heat fluxes. Agric. Forest 
Meteorol., 213: 226–239.

Yu, X., Lama, A., Duffy, C., Krám, P., Hru, J. (2016). Hydrological 
model uncertainty due to spatial evapotranspiration 
estimation methods. Computers Geosci., 90: 90–101.

Yuan, W., Liu, S. and Yu, G. et al. (2010). Global estimates of 
evapotranspiration and gross primary production based 
on MODIS and global meteorology data. Remote Sensing 
Environ., 114(7): 1416–1431.

Yuan, W., Liu, S., Liang, S., Tan, Z., Liu, H. and Young, C. (2012). 
Estimations of evapotranspiration and water balance with 
uncertainty over the Yukon River Basin. Water Resources 
Manage., 26: 2147–2157.

Zhang, H., Hendricks, Franssen, H.J., Han, X., Vrugt, J.A. and 
Vereecken, H. (2017). State and parameter estimation 
of two land surface models using the ensemble Kalman 
filter and the particle filter. Hydrol. Earth Syst. Sci., 21: 
4927–4958.

Zhu, G., Su, Y., Li, X., Zhang, K. and Li, C. (2013). Estimating 
actual evapotranspiration from an alpine grassland on 
Qinghai-Tibetan plateau using a two-source model and 
parameter uncertainty analysis by Bayesian approach. J. 
Hydrol., 476: 42–51.

An overview of uncertainties in evapotranspiration estimation techniques




