
Agriculture has prospered from the advancement of 
remote sensing technology, which has provided for acquiring data at 
both spatial and temporal scales. Because of its temporal coverage 
and ability to capture images in a range of spectral wavelengths, 
remote sensing of crop canopies has been promoted as a potentially 
useful tool for agricultural management. All of the key crop models, 
such as those for wheat, cotton, rice, and maize, were calibrated 
for yield estimation near to harvest time and during the early to 
peak growth season. Using satellite imageries for monitoring 
purposes has numerous limitations, including unpredictable weather 
conditions, and is unprofitable for small agricultural farms due to 
increased field maintenance expenses. Nowadays, smart farming is 
the need of the hour, and the next agricultural revolution will be 
data-oriented, so the advancements and implications of drones have 
great potential to transform our Indian agriculture. 

Drones can cover hundreds of hectares in a single trip 
and are more effective for crop management and monitoring (Li et 

al., 2019). Different sensors can be used in an agricultural drone 
depending on the crop characteristics that must be monitored 
(Yang et al., 2019). These sensor data can be used to measure 
vegetative health, soil moisture, and other important agricultural 
characteristics at different stages of development (Tsouros et al., 
2019). Furthermore, UAV-based digital images could be a more 
cost-effective alternative to data gathered by manual fieldwork, 
which is time-consuming, involves destructive sampling, and can 
result in incorrect and subjective results. For intuitive visualization 
of crop growth status, agricultural remote sensing users use a 
variety of spectral vegetation indices (Ranjan et al., 2012) of 
nominal reflectance values (Marang et al., 2021). Because they can 
enhance spectral differences at specific wavelengths, these indices 
effectively assess crop growth status (De Castro et al., 2021). 

To optimize field management and crop production, it’s 
essential to monitor crop development and accurately estimate crop 
yield. Accurate cotton yield estimation could aid farmers in making 
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ABSTRACT 

The unmanned aerial vehicles (UAV) have become a better solution for agricultural growers due to advanced features such as minimal maintenance 
costs, quick set-up time, low acquisition costs, and live data capturing. Near-ground remote sensing (drone) has opened up new agronomic opportunities for better 
crop management. This study predicted the seed cotton yield for a cotton field area located at Tamil Nadu Agricultural University, Coimbatore. Pearson correlation 
analysis and regression analysis were done for ground truth data and vegetation indices for validation and accuracy and also to find the best-performing indices. It 
was concluded that the Wide Dynamic Range Vegetation Index (WDRVI) showed a better correlation coefficient (R=0.949) with LAI ground truth data 
(R2=0.902). In contrast, the Modified Chlorophyll Absorption Ratio Index (MCARI) showed a better correlation coefficient (R=0.975) with SPAD chlorophyll 
ground truth data (R2=0.951). Then the best performing indices WDRVI and MCARI were further used for generating the yield model. High spatial resolution 
drone imageries for determining LAI and chlorophyll are reliable and rapid, as per the study. It helps to determine the LAI and chlorophyll at a spatial scale and 
their influence on yield production. This yield prediction was technical support for the widespread adoption and application of unmanned aerial vehicle (UAV) 
remote sensing in large-scale precision agriculture.
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better decisions about harvest, transportation, and storage in the field 
(Moyer and Komm, 2015). UAV-based imaging systems were used 
to monitor cotton growth status (Duan et al., 2017) and estimate 
cotton yield (Feng et al., 2019). LAI (Chaudhari et al., 2010) and 
chlorophyll are widely employed to define canopy structure and 
estimate yield (Guo et al., 2020). However, traditional agricultural 
parameter estimation methods rely on destructive measurement, 
wasting time and energy and making it impossible to apply across 
a vast region. To accurately depict the diversity of foods, sources 
of income, and economic efficiency, yield predictions should be 
reliable at the individual crop level (Kumar et al., 2022). This study 
aimed (1) to estimate cotton LAI and SPAD chlorophyll at the 
spatial level using drone derived multispectral vegetation indices 

and (2) to validate the derived spectral indices using measured 
ground truth data (3) to predict seed cotton yield through LAI and 
SPAD chlorophyll derived from spectral vegetation indices. 

MATERIALS AND METHODS

Study location

The experiment was carried out in a cotton research field 
at the Department of Cotton, Tamil Nadu Agricultural University, 
Coimbatore. The study area covers about 3.5 acres having the geo-
coordinates from 11°01’13.99” N latitude and 76°55’44.69” E 
longitude to 11°01’11.98” N latitude and 76°55’49.82” E longitude 
at an altitude of 429m above MSL (Fig. 1). 

Fig. 1: Location of the study area

Image acquisition

This study used a Quadcopter drone with a payload of 
MicaSense RedEdge multispectral camera. A flight mission was 
carried out on December, 2021, under a clear sky between 11 AM 
to 12 PM for 9 minutes for multispectral image collection. Geo-
referencing was done using a ground control point (GCP). The 
camera captures the picture, stores it in memory, and sends it to the 
ground station through telemetry. In addition, MicaSense RedEdge 
calibration was done using a Calibrated Reflectance Panel (CRP). 
The calibration was immediately practiced before each flight 
according to the calibration manual. The harvest stage of the crop 
was chosen for this study as it will be very useful and was the most 
sensitive stage for yield prediction. 

Ground data collection

The ground data on LAI and SPAD chlorophyll were 
collected on the same day when drone images were captured to 
validate the vegetation index. The ten ground data was collected 
for the validation of the vegetation index. The seed cotton yield 
was recorded during each picking and final yield was recorded and 
expressed in g/plant.

Image processing

Multispectral images obtained were processed using 
Pix4D mapper software. The raw data were processed, analyzed, 
and geo-referenced to produce ortho-mosaic. In addition, multiple 
overlapped images obtained were stitched together to create a large 
map for an accurate geo-referenced map. 

Generated vegetation indices

The vegetation indices are the primary tool for analyzing 
aerial images. First, post-processed photos were used to generate 
vegetation indices maps using ArcGIS 10.6 software. Then, 
the vegetation indices formula was applied to obtain information 
from the processed data. The vegetation indices like GNDVI, 
EVI, EVI2, PVI, ARVI and WDRVI were very useful in 
predicting the LAI and ExG, EVI, EVI2, PVI, ARVI and 
MCARI were very useful in predicting the chlorophyll, 
respectively. Utilizing the ground data co-ordinates, the spectral 
information from the different vegetation indices was extracted 
using the pixel by value tool in ArcGIS 10.6 software. Finally, 
the extracted spectral information is subjected to statistical 
analysis. 

Statistical analysis was done using SPSS 22 software for 
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validation. First, Pearson correlation analysis was done to identify 
the best vegetation index with the highest correlation with ground 
truth data. Next, the coefficient of determination (R2) and RMSE 
values was calculated to predict the model accuracy. Finally, 
regression (R2) values were calculated for vegetation indices 
(independent variable) and ground truth data (dependent variable) 
to find out the best line of fit. A higher R2 and lower RMSE value 
indicate that the independent variable is highly predictable from the 
dependent variable.

The ground data (LAI and SPAD chlorophyll) were 
correlated with seed cotton yield for predicting the yield model. 
The independent variables considered in the analysis were LAI and 
SPAD chlorophyll, and the dependent variable was the seed cotton 
yield. The dependent variable was regressed with the independent 
variables at different combinations to find the best-fit regression 
equation for predicting the yield model.

RESULTS AND DISCUSSION

The UAV collected high-resolution multispectral images 
for calculating LAI and chlorophyll, which yielded positive and 
negative, strongly correlated results. The study area generated 
different vegetation indices like ExG, GNDVI, EVI, EVI2, 
PVI, ARVI, WDRVI and MCARI. As each index uses different 
wavebands, the map outputs of the vegetation indices were different. 
By utilizing the ground data coordinates in ArcGIS 10.6 software, 
10 points were selected from the indices map and extracted point 
values using the pixel by value tool (Table 1). 

Statistical analysis was done to establish a relationship 
between UAV-derived vegetation indices value and ground truth 
data. Pearson correlation coefficient was done to identify the most 
sensitive vegetation index to the LAI and SPAD chlorophyll. The 
regression equation and RMSE values for the vegetation indices 
were calculated and given in Table 2.

Table 1: Vegetation indices value and Ground truth data for LAI, SPAD chlorophyll and seed cotton yield (g/plant)

S. No. Latitude Longitude ExG GNDVI EVI EVI2 PVI ARVI MCARI WDRVI LAI SPAD Yield
1 11.0202 76.9300 2.431 0.633 0.221 0.218 0.098 0.723 0.135 0.291 1.3 42.7 78
2 11.0201 76.9299 2.998 0.666 0.224 0.221 0.097 0.806 0.163 0.405 1.5 52.9 83
3 11.0202 76.9298 2.217 0.630 0.218 0.214 0.095 0.786 0.176 0.351 1.4 60.7 81
4 11.0201 76.9297 2.459 0.627 0.202 0.198 0.089 0.748 0.122 0.268 1.3 42.6 78
5 11.0202 76.9297 1.805 0.620 0.190 0.187 0.083 0.736 0.109 0.275 1.3 40.3 77
6 11.0200 76.9296 2.361 0.632 0.183 0.181 0.082 0.695 0.097 0.207 1.0 37.5 77
7 11.0201 76.9295 2.998 0.599 0.184 0.182 0.082 0.711 0.118 0.230 1.1 42.3 78
8 11.0200 76.9294 2.911 0.652 0.224 0.221 0.098 0.793 0.173 0.382 1.5 54.3 81
9 11.0201 76.9294 2.937 0.640 0.239 0.235 0.105 0.789 0.193 0.359 1.4 60.8 84
10 11.0201 76.9292 2.117 0.614 0.214 0.210 0.093 0.775 0.167 0.325 1.4 54.2 81

Table 2: Relationship between vegetation indices with LAI and SPAD chlorophyll data

Indices Regression equation R2 RMSE
LAI

GNDVI 0.353 0.138
EVI 0.679 0.097
EVI2 0.669 0.098
PVI 0.588 0.110

ARVI 0.876 0.061
WDRVI

y = 5.1029x -1.902
y = 6.9696x - 0.143
y = 7.098x - 0.147
y = 115.66x - 0.124
y = 3.9105x - 1.6371
y = 2.3396x + 0.5964 0.902 0.053

ExG 0.075 8.862
EVI 0.669 5.256
EVI2

SPAD chlorophyll 
y = 5.6871x + 34.479
y = 371.14x - 29.072
y = 377.85x - 29.273 0.659 5.384

PVI 0.617 5.703
ARVI 0.774 4.381

MCARI

y =  861.1x - 30.564 
y = 197.28x - 100.35 
y = 256.66x + 11.537 0.951 2.036

Among the vegetation indices, the WDRVI and 
MCARI had a higher positive correlation coefficient (R=0.949 and 
R=0.975) with the ground truth data than other vegetation 
indices. WDRVI and MCARI recorded an R2 value of 0.902 
and 0.951, RMSE of 0.053 and 2.036, respectively.

This shows that WDRVI and MCARI had higher accuracy 
for predicting the LAI and chlorophyll content. A higher correlation 
coefficient indicates healthy/dense vegetation with higher LAI and 

chlorophyll content, whereas lower values indicate stressed/sparse 
vegetation with lower LAI and chlorophyll content. 

The highly correlated vegetation index WDRVI and 
MCARI were further used to generate the study area’s LAI 
and SPAD chlorophyll map (Fig.2 and 3). This will be useful in 
predicting the crop’s canopy coverage and chlorophyll content. The 
area covered by LAI with higher values recorded the higher SPAD 
chlorophyll content. This shows that the higher LAI will influence 
increased SPAD chlorophyll. 

Cotton yield prediction using drone derived LAI and chlorophyll content
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Fig 2: LAI map of the study area
Fig 3: SPAD chlorophyll map of the study area

Fig 4: Predicted yield map using LAI Fig 5: Predicted yield map using SPAD

Fig 6: Predicted yield map using LAI and SPAD

Table 3: Seed cotton yield prediction equation using LAI and SPAD chlorophyll

Attributes Regression equation R2 RMSE
LAI Y = 64.47 + 11.61 LAI 0.552 1.795

SPAD Y = 66.86 + 0.2651 SPAD 0.829 1.109
LAI and SPAD Y = 65.54 + 0.2359 SPAD + 2.08 LAI 0.836 1.158
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The stepwise multiple linear regression was calculated 
between the independent variables (LAI and SPAD chlorophyll) 
and dependent variable (seed cotton yield) in different combinations 
to find the best-fit regression equation (Table 3) for predicting the 
yield. The combined regression model (LAI and SPAD) showed a 
higher R2 value of 0.836 with an RMSE of 1.158. 

Therefore, the area with higher LAI and SPAD chlorophyll 
predicted more yield, indicating the crop’s healthy condition at 
harvest stage. Conversely, the area with lower LAI and SPAD 
chlorophyll area defines the stressed condition of the crop with a 
lower yield. This lower yield prediction may also due to the crop 
loss at later growth stages as the crop coincides the heavy rainfall in 
December month (harvest stage) of crop. The yield equation model 

having a higher R2 value was further used to generate the seed cotton 
yield map (Fig. 4, 5 and 6) for the study area. 

The predicted LAI and SPAD chlorophyll maps were 
tested for their accuracy using regression analysis (Table 4) between 
the ground truth observed values and predicted values. The predicted 
yield maps using LAI, SPAD chlorophyll, and a combination of LAI 
and SPAD chlorophyll were tested for accuracy by using regression 
analysis (Table 5) between the observed yield and predicted yield 
from the maps. The yield predicted by using LAI and SPAD 
chlorophyll had a higher positive correlation with the observed yield 
with an R2 value of 0.822 confirming that yield will be influence by 
LAI and chlorophyll content.
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Table 4:  Accuracy assessment between observed and predicted 
LAI and SPAD chlorophyll

Predicted values Regression Equation R2 RMSE
LAI y = 0.8682x + 0.0152 0.645 0.077

SPAD y = 0.7206x + 11.63 0.688 2.735

Table 5:  Accuracy assessment between observed yield and 
predicted using LAI, SPAD chlorophyll, combination of 
LAI and SPAD chlorophyll yield

Predicted yield Regression Equation R2

LAI y = 0.8106x + 14.173 0.635
SPAD y = 1.0238x - 1.8129 0.703

LAI and SPAD y = 0.8417x + 12.097 0.822

Furthermore, the changes in crop growth status, which 
can be successfully, tracked using spectral measurements, directly 
impact the final yield. Therefore, this yield prediction will be useful 
for the farmers in estimating the yield loss or gain for fixing the 
market value of the produce.

CONCLUSION

Developing efficient tools for precise yield estimation 
before harvest is crucial in cotton cultivation. The UAV 
multispectral remote sensing system has considerable application 
potential in rapidly, accurately, and economically assessing 
agricultural crop characteristics and yields. Crop growth indicators 
like LAI and chlorophyll were more connected to canopy spectral 
reflectance. Due to the correlation between crop yield and the 
amount of photosynthetic tissue, spectral indices collected during 
the growing season can also be used to estimate the crop yield. 
Therefore, they could be done on a wide scale in contrast to the 
traditional measurement of agronomic parameters, such as LAI and 
chlorophyll.
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