
Rice is the important staple food of more than half of 
the population of world which also holds true for India. So the 
failure of rice crop for any reason is threat to starvation. Rice is 
vulnerable to disease and pest wherever it is grown. Rice blast 
disease, caused by Pyricularia oryzae, is considered to be the 
most important fungal disease in rice (Oryza sativa L.) because of 
its worldwide distribution and its destruction (Couch and Kohn, 
1985). The infected plant shows small brown specks of pin point 
size which gradually increases and developed a small roundish to 
slightly elongated necrotic grey spot about 1-2 mm long in diameter 
with distinct brown margin (IRRI, 1996). The pathogen not only 
destroys a single plant but completely destroys the whole field 
and leads to huge yield loss (Chuwa et al. 2015). This everlasting 
situation begs for proper monitoring, accurate quantification of 
disease severity and efficient controlling method. Traditionally the 
extent of diseases and pest damage in a large plant population is 

assessed based on visual observation of symptomatic plants which 
is time consuming and labour intensive. In addition, the potentiality 
of raters to precisely detect plant disease may differ, as evidenced 
by Nutter et al. (1993), who turned up significant variation among 
raters in visually assessing dollar spot severity in creeping bentgrass 
(Agrostis palustris Huds.). Furthermore, plant responds to abiotic 
stress, such as drought, extreme temperatures, edaphic conditions, 
and high winds are difficult to quantify and thus make it difficult 
to assess disease severity visually with acceptable levels of 
accuracy and speed. However, the aforementioned plant responses 
to infection often affect the amount and quality of electromagnetic 
radiation reflected from the plant canopy (Nutter et al. 2002). This 
suggests that remote sensing techniques may provide an easily 
available record of disease severity and a more objective assessment 
than is possible with visual assessments by raters (Coops et al. 
2003; Apan et al. 2004; Sankaran et al. 2012). Remote sensing data 
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Remote sensing is being increasingly used in stress management in different agricultural practices. It is useful for real time analysis for crop stress which is 
not possible for visual observation alone. Rice blast caused by fungus Pyricularia Oryzae is a serious constrain in rice production in India. There is hardly any 
basic information available for spectral characteristics of rice blast disease for its real-time detection and management. Present study is to characterize spectral 
reflectance of blast affected rice in order to identify the sensitive spectral range. Disease severity of 10 different genotypes of rice was graded 0 to 9 based on 
the extent of host organ covered by symptom or lesion. Result shows that severely infected plant (score 9) have higher reflectance at visible region and lower 
reflectance at NIR region. Change in the reflectance for the infected plant as compare to the healthy plant was more pronounced in the VNIR, 550 to 760 nm and 
1140 and 1300 nm having correlation coefficient above 0.6. The study of change in the reflectance with the change in wavelength (1st derivative) revealed that 
VNIR region have high correlation with the disease severity. Maximum rate of change value at red edge position (REP) is called as red edge value (REV) which 
has good relation with disease severity levels. Amplitude of the red edge peak decreases with the increase in severity levels. Amplitude of score 0 and 9 was 
0.00929 and 0.002301, respectively for upland land condition whereas the amplitude of the score 0 and 9 was 0.010421 and 0.00193, respectively for upland land 
rice. This study identifies that VNIR and red edge region are sensitive for detecting rice blast, which could be utilized to aerial or satellite based monitoring blast 
affected rice cropping region.
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especially reflectance instituted to be capable of detecting changes 
in the biophysical properties of plant and canopy associated with 
pathogens (Moran, et al. 1997; Moshou, et al. 2005; Jensen, 2007; 
Ranjan et al. 2012; Sahoo et al. 2015). In addition, remote sensing 
may provide a greater means to objectively quantify disease stress 
than visual assessment methods, and it can be used to repeatedly 
collect sample measurements non-destructively and non-invasively 
(Nilsson, 1995; Moran et al. 1997).

Characteristic changes in reflectance spectrum has been 
observed due to yellow rust of wheat (Bravo et al., 2003), powdery 
mildew of wheat (Graeff et al. 2006), late blight of tomato (Wang 
et al. 2008), grey mold of kiwifruit (Costa et al. 2007), leaf roll of 
grapevine (Naidu et al. 2009) and yellow mosaic virus in soybean 
(Gazala et al. 2013). Though, commonly used broadband have been 
shown to detect differences between healthy and diseased plants 
(Sharp et al. 1985; Lorenzen and Jensen, 1989; Nicolas, 2004), 
but discrimination of healthy plants from those showing mild 
symptom is not very sharp. However, measurement of reflectance 
contiguously (hyperspectral remote sensing) as a series of narrow 
wavelength band provides pertinent information for discrimination 
of disease and other plant stresses. or remote sensing detection 
specific spectral reflectance associated with rice blast infection is 
required for large scale assessment and monitoring of blast disease 
in rice field especially for strategic or tactical crop management 
decision and yield loss prediction. However, till now no study has 
been conducted to characterize the reflectance spectra of rice for 
assessing blast disease in India. Objective of the present study was 
to characterize the reflectance spectra associated with blast infection 

in rice for detection of the disease in large area based on remote 
sensing data.

MATERIAL AND METHOD

Experimental area

Field experiments were conducted in Hawalbagh farm of 
ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora 
(29.590 N latitude, 79.640 E longitude and 1245 m above msl) at 
two condition of rice cultivation i.e. upland non-irrigated condition 
and lowland irrigated condition, with 10 genotypes of rice each for 
sensitive and resistance to blast disease having 3 replications laid 
in randomized block design (Table 1). The climate of experimental 
location is basically temperate type with cold winter and moderate 
summer. Almora has an average annual maximum temperature of 
around 23°C and average minimum temperature of approximately 
10°C. The average annual rainfall of Almora is 1152 mm. 

Measurement of spectral reflectance of rice with different gradient 
of blast severity

Ten rice genotypes were cultivated each for rain fed and 
irrigated conditions. The typical symptoms of rice blast is necrotic 
spot roundish elongated with a district brown margin which 
gradually covers the whole leaf. At the time of peak infection, all 
the rice genotypes were graded on the basis of extent of disease 
infection and the area covered by the necrotic lesion as per the 
protocol given by IRRI (1996) (Table 2).

Table 1: Disease rating score (0-9) and entries details under field conditions at Almora, Uttarakhand

Rainfed (Upland) condition Irrigated (lowland) condition
Entry name Disease rating score Entry name Disease rating score
BL-18 9 DH-79 9
DSN-140 8 Bala 8
DSN-120 7 DH-30 7
DSN-119 6 DH-33 6
BL-21 5 DH-34 5
BL-6 4 DH-32 4
BL-10 3 DH-44 3
BL-12 2 DH-49 2
VL 32473 1 DH-47 1
VL 32475 0 DH-94 0

Table 2: Description of disease score of blast disease of rice crop as per the protocol given by IRRI (1996)

Disease rating Description
Score 0 No lesion 
Score 1 Small brown specks of pin point size
Score 2 Small roundish to slightly elongated, necrotic gray spots, about 1-2 mm in diameter, with a distinct moderately resistant 

brown margin. Lesions are mostly spotted on the lower leaves
Score 3 Lesion type is same as in 2, but significant number of lesions on the upper leaves
Score 4 Typical susceptible blast lesions, 3 mm or longer infecting ≤ 4% of leaf area
Score 5 Typical susceptible blast lesions of 3 mm or longer infecting 4-10% of the leaf area
Score 6 Lesion type is same as in score 5 but infecting about 11-25% of the leaf area
Score 7 Lesion type is same as in score 5  infecting about 26-50% of the leaf area
Score 8 Typical susceptible blast lesions of 3 mm or longer infecting about 51-75% of the leaf area many leaves are dead
Score 9 Typical susceptible blast lesions of 3 mm or longer infecting ≥75% leaf area affected
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 Canopy reflectance of rice at Almora field was measured 
for 10 (0-9 scale) disease severity levels with help of hand held ASD 
FieldSpec spectroradiometer (Analytical Spectral Devices Inc., 
Boulder, CO, USA). The measurement was taken on a clear sunny 
day between 11.00am - 01.00 pm with spectroradiometer having a 
250 field of view and positioned at 0.5 m from the top of the canopy 
at nadir position in the spectral arrange of 350-2500 nm. Prior to 
spectral reflection measurement the instrument was optimized with 
white reference panel called spectralon (Labsphere, Inc., Sutton, 
NH, USA) and reference reflectances were measured followed 
by canopy reflectance measurements. Each spectral measurement 
is the average of the 30 spectral scan of the sample. Instrument 
optimization was repeated with the spectralon in between the spectral 
observations when there was a change in sun light conditions. 

Pre-processing of spectral reflectance data

The aim of pre-processing is to reduce the effects 
of random noise and improve signal-to noise ratio. The most 
frequently used filter in spectral data analysis is Savitzky-Golay 
filter that uses a moving polynomial fit of any order and the size of 
the filter is calculated as (2n+1) points, where n is the half-width of 
the smoothing window. The points between the 2n’s are interpolated 
by the polynomial fit (Savitzky and Golay, 1964).

Developing relationship between spectral reflectance and disease 
severity

The correlation between spectral reflectance and disease 
severity was analyzed to identify the different spectral regions 
sensitive to rice blast disease. In this study the correlation value 
0.6 was considered as threshold to identify the sensitive spectral 
regions.

Spectral derivative and red edge analysis

First derivative of mean reflectance was calculated and 
appropriate order of polynomial fitting was performed through 
least squares method (Savitzky and Golay, 1964). Red edge shifts 
and shapes of the red peak in the first derivative curve were 
studied under various levels of disease severity. Wavelength (kre) 
and amplitude (drre) of the red peak for each infection level were 
estimated through linear interpolation technique by fitting a second 
order polynomial equation to the red infrared slope (Guyot et al. 
1988). Characterization of spectra under different severity levels 
was done in relation to the following red edge parameters; λre the 
wavelength of this red edge peak, drre the amplitude of the red edge 
peak in the first derivative reflectance curve and Ʃ(dr 670–780) sum 
of the first derivative reflectance amplitudes between 670 and 780 
nm.

RESULT AND DISCUSSION

Scoring of blast disease infection

The disease severity levels were estimated by evaluating 
percentage of host tissue covered by the necrotic lessons of the 
disease and number and size of the lesson. The extent of rice blast 
severity was graded from 0-9 as per the guideline of IRRI. The 
severity level 0 depicts that the plant is healthy having no symptoms 

at all and the disease severity level 9 depicts that the plant is 
most severely affected by pathogen. The disease severity levels; 
in-between show various levels of infestation and severity level 
gradually increases from 0 to the level 9. Rice genotypes, BL 18 and 
DH 79 grown under rain fed and irrigated conditions respectively 
were assigned as level 9. Genotypes, VL 32475 and DH 94 grown 
under rain fed and irrigated conditions respectively were assigned as 
severity level 0. The details of other variety and their corresponding 
severity levels are shown in Table 1.

Response of leaf reflectance to variation in disease severity level

            In this study a differential spectral response was witnessed 
with varying level of disease infestation. Fig. 1 shows the dynamic 
changes in leaf reflectance under different disease infestation 
levels. As the disease severity level progressed, the reflectance in 
visible region increases, basically at the red region the reflectance 
is more in the severely affected plant than the healthy plant. At 
this particular spectral region the spectral reflectance was mainly 
influenced by leaf pigment content. For blast infected plants, plant 
chlorophyll was almost damaged by the pathogen. Similar finding 
was also investigated by Kobayashi et al. (2003) for panicle blast 
disease detection. In the NIR region the reflectance of healthy plant 
is higher than infected and with the increase in disease severity level 
reflectance at NIR region gradually decreased. Due to the severe 
infection by the pathogen, the plant eventually starts producing the 
reactive oxygen species such as hydrogen peroxide and deposition 
of cellulose at the site of infection (Thordal-Christensen et al. 1997; 
Nishimura et al. 2003) which are the main causes of producing 
necrotic lesions leading to cell damage and finally death of the plant. 
Das et al. (2013) also reported the decrease in reflectance at NIR 
region for yellow mosaic virus infected soybean crop. In the SWIR 
region there was higher reflectance for the severely affected plant as 
compare to the disease infected plant. This may be attributed to the 
lower leaf water content for the blast infected plants.

 The   difference of reflectance of rice plant at different 
severity levels (score 1 to 9) from that of healthy plant was computed 
and plotted over spectral range 350 to 2500nm (Fig. 2). The spectral 
ranges where difference is very conspicuous are red band at around 
690nm and NIR ranging from 800 to 1100 nm. More the severity 
more is the in positive difference in red band and more in negative 
difference in the NIR range. In shortwave infrared region also 
positive difference in reflectance was found. Absorption in visible 
range 400-700nm is mainly characterized by electron transitions in 
chlorophyll and other plant pigments. In NIR and SWIR spectral 
ranges, spectral reflectance gets major affected by bending and 
stretching of the O-H bond in water and other molecules yielding 
unique absorption centred at wavelengths of 970nm, 1145nm, 
1400nm and 1940nm (Curran, 1989) Spectral reflectance in the near 
infrared region (700-1100nm) is dependent mostly on the internal 
leaf structure. In NIR spectral range, there are multiple reflections 
in the internal mesophyll structure caused by differences in the 
refractive index of cell wall and the internal air cavity namely 
vacuole so normally plant experience higher reflectance. At the 
short wave infrared region (1100-2500nm) reflectance is influenced 
by composition of leaf chemical and water (Jacquemoud and Ustin, 
2001).  
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Relationship between disease severity and spectral reflectance 

Spectral reflectance at each wavelength was variably 
correlated with the disease severity score values i.e. 0 to 9 over 
the whole spectral range (350 to 2500 nm) (Fig. 3). Considering 
correlation above 0.6 as threshold value, identifies spectral ranges 
having relation with disease scores are at 690nm, 700 to 1000nm 
and at 1475nm and 1950 to 2100 nm in case genotypes grown 
under upland condition. Similar relation was also found in low land 
condition of rice grown except at SWIR-1 where relation was poor. 
Evaluating the spectral reflectance of rice blast at their different 
severity levels revealed significant difference in the reflected values 
in visible, NIR and SWIR spectral ranges though reflectance pattern 
remains same.

Rice blast is caused by hemibiotrophic fungi. The pathogen 
produces a specialized infectious structure called appresorium, 
which adheres tightly the plant surface using mucilage (Howard 
et al. 1991). The fungus generates enormous turger pressure inside 
the leaf cell and thin penetration peg pierces the rice leaf surface 
using this pressure to enter into the host by damaging the epidermal 
and mesophyll cell, that hypheae then starts growing intracellular 
and inter cellular by slowly damaging the internal leaf structure. 
Due to the severe infection by the pathogen, the plant eventually 
starts producing the reactive oxygen species such as hydrogen 
peroxide and deposition of callose at the site of infection (Thordal-
Christensen et al. 1997; Nishimura et al. 2003) which are the main 
causes of producing necrotic lesions leading to cell damage and 

finally death of the plant. Callose is a plant polysaccharide produced 
to act as a temporary cell wall in response to disease stress. This is 
reason of significant changes in spectral reflectance values in NIR 
ranges. Pathogen severely affects the mesophyll cell and almost 
kills the plant. Therefore, at the disease severity level 9, there is no 
difference between spectra of soil and plant as the plant is almost 
dead. These observations are aligned with results reported by Yang 
et al. (2012) for blast disease in rice. 

Response and relationship of 1st derivative of canopy reflectance to 
variation in disease severity

By plotting the change in reflectance with respect to the 
change in wavelength (1st derivative) the sensitive spectral ranges 
of disease severity assessment was calculated (Fig. 4), and then 
correlated with disease severity scores (Fig. 5). It was found that 
correlation was higher (r>0.6) in visible and NIR ranges whereas a 
lower correlation was found in case of SWIR I and SWIR II region. 
A higher and positive correlation was found in the region of 490-
550 and 680-760 nm whereas 550-680 nm region was negatively 
correlated. The correlation was also higher at few spectral values 
in the ranges of 1100-1200 and 1250-1340 nm. Mathematical 
transformation of the reflectance to 1st derivative led to identify some 
of the sensitive spectral ranges to rice blast disease severity levels. 
Evaluating the red edge region of the spectral reflectance (680-
760nm) from 1st derivative reflectance values, high correlation of 

                

Fig. 2: Spectral reflectance difference of rice plant with different severity levels with reference to healthy (a) Rainfed (upland), (b) Irrigated 
(lowland)

                

Fig. 1: Spectral reflectance of rice canopy under different disease severity levels at Almora under (a) Rainfed (upland) and (b) Irrigated (lowland) 
conditions
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Fig. 3: Correlation between canopy reflectance and disease severity (a) Rainfed (upland), (b) Irrigated (lowland)

                

Fig. 4: 1st derivative of canopy reflectance spectra of blast infected rice at different severity level (a) Rainfed (upland) and (b) Irrigated (lowland)

                

Fig. 5: Sensitive spectral ranges for disease severity through correlation analysis of 1st derivative of spectral reflectance with disease score 
values in (a) Rainfed (upland) and (b) Irrigated (lowland)

                

Fig. 6: Red edge curve of blast infected rice canopy in (a) Rainfed (upland) and (b) Irrigated (lowland)
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red edge value (REV) with disease scores was found. Correlations of 
1st derivative of spectral reflectance with disease scores confirmed 
again sensitivity of red edge region with disease severity levels. The 
pathogen of rice blast damages the cell structure and dries of the 
plant producing necrotic spots. The damage in chlorophyll content 
of plant led to effect on red edge value. Cell structure damage and 
loss of cell water led to high correlation of disease score values in 
spectral range in NIR and SWIR ranges 1100-1200nm and 1250 to 
1340nm. The mixed effect of loss of plant chlorophyll and damage 
of cellular structure yielded this VNIR as most the sensitive region 
for disease detection.

Effect of disease severity on spectral reflectance in red edge region 

 Red edge region is the spectral range from 680 to 760 nm 
(Fig. 6). The rate of change of reflectance with wavelength in the 
red edge region is very sensitive for detection of stress of a crop.The 
point of inflection where rate of change of reflectance changes from 
positive to negative is called red edge position (REP). REP shifts 
to lower spectral value called blue shift when there is stress and it 
shifts to higher value called red shift when the plant recovers from 
stress basically healthy. Though there was no evidence of blue shift 

with the increase in blast severity levels in this study. Amplitude 
of the red edge peak decreases with the increase in severity levels. 
Amplitude of score 0 and 9 was 0.00929 and 0.002301, respectively 
for upland land condition whereas the amplitude of the score 0 
and 9 was 0.010421 and 0.00193, respectively for upland land rice 
(Table 3). Fahrentrapp et al. (2019) and Adak et al. (2021) reported 
similar findings for gray mold leaf infections and nitrogen stress 
in wheat, respectively. Max rate of change value at REP is called 
red edge value (REV) which has good relation with stress levels. 
REV is maxima of 1st derivative reflectance. The regression analysis 
between REV and disease severity score showed a high R2 value 
of 0.81 and 0.91 for upland and irrigated condition, respectively 
(Fig 7). Table 3 shows that the sum of first derivative reflectance 
between 670-780 nm gradually decreases towards the highest 
disease severity level.  This is consistent with findings by Mahlein 
et al. (2010) who found similar red edge reflection patterns studying 
sugar beet leaves infected with fungal diseases such as C. beticola- 
and U. betae. 

CONCLUSIONS

 The study revealed potential of hyperspectral remote 

Table 3: Characteristics of red edge curve under different disease severity levels

Disease 
score

Rainfed (upland) condition Irrigated (lowland) condition
Amplitude of red edge 

peak
(REV)

Sum of the first derivative 
reflectance amplitudes 

between 670 and 780 nm

Amplitude of red edge peak
(REV)

Sum of the first derivative re-
flectance amplitudes between 

670 and 780 nm
9 0.002301 0.14037 0.001935 0.09902
8 0.003579 0.19416 0.002420 0.14089
7 0.003948 0.21308 0.003414 0.18379
6 0.004648 0.25566 0.005692 0.28623
5 0.005993 0.30546 0.006378 0.31054
4 0.005954 0.30184 0.006897 0.33602
3 0.006242 0.31344 0.007551 0.37090
2 0.007041 0.33868 0.007677 0.37004
1 0.008400 0.40711 0.009063 0.43803
0 0.009429 0.45032 0.010421 0.49294

                
Fig. 7:  Relationship between disease severity level (score) and red edge value (REV) (a) Rainfed (upland), (b) Irrigated (lowland)
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sensing not only for characterizing rice crop infected with blast 
disease but also finding out sensitive bands to assess its severity 
level. Difference in spectral reflectance was clearly visible for 
different disease severity levels and was more pronounced in VNIR 
range. Spectral transformation to 1st derivative (red edge) and 2nd 
derivative led to find most sensitive spectral ranges 550 to 760nm 
and 1140 and 1300 nm for disease scores.  Predictive model blast 
disease with red edge value (REV) with R2 value 0.81 and 0.91 
revealed above 0.6 has great opportunity to upscale in field scale 
using some the recently develop multispectral camera with red edge 
band on airborne platform like unmanned aerial vehicles. 
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