
Biological invasions are significantly impact the native 
ecosystem, biodiversity, and the economy; however, the possible 
factors contributing to successful invasion remain elusive, resulting 
to the severe ecological damage and economic loss. An increase 
in the volume, diversity and frequent movement of plants and 
their byproducts for the trade across the globe has led to the quick 
dissemination of invasive species and those closely associated with 
plants, such as scales, mealybugs and whiteflies (Wosula et al. 2018). 
Further, climate changes such as extreme climatic events could 
enhance invasive processes from initial introduction, establishment 
and spread to other potential geographical regions (Diez et al. 2012). 
Rugose spiraling whitefly is a highly invasive, voracious sap sucker, 
high reproduction, excretion of excessive honey-dew and adapted to 
warmer climates. It has become a major pest on coconut, oil palm, 
banana, guava and many other host plants in India and causing 
substantial damage in more than 30 host plants (Selvaraj et al. 
2019). Due to variation in the agro-climatic conditions of different 
regions, the arthropods show varying trends in their incidence also 
in nature and extent of damage to the crop (Elango et al., 2021).

Determination of habitat suitability for the growth and 
development of invasive species under changing climatic conditions 

using a forecast model could facilitate better management strategies 
and contain their spread to new geographical regions (Kumar et al. 
2015). Integration of ecological niche models (ENM) with species 
distribution models are the most appropriate approaches to predict 
the potential distribution and spread of various pests based on 
occurrence points and corresponding climatic variables (Bentlage 
et al. 2013). Chattopadhyay  (2021)  stated  that  the management of 
weather and climate risks in agriculture has  become  an  important  
issue  due  to  climate  change. Mapping the potential distribution of 
agriculturally important insect pests using computer-aided MaxEnt 
(maximum entropy modelling) is ideal tool in a habitat suitability 
model. The model perform based on the ecological niche principle 
that use species distribution data, extensively being used for pest 
risk zoning of invasive species (Wang et al. 2020). Therefore,  
the present study was proposed to predict the potential geographical 
distribution of invasive rugose spiraling whitefly under 
 present (2020) and futuristic (2050 & 2070) climate  
change scenarios through ecological niche models-based  
approach.
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The potential distribution of invasive rugose spiraling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) was predicted under present (2020) 
and future climate change emission scenarios in 2050 and 2070 under four representative concentration pathways (RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5) using 
maximum entropy (MaxEnt) niche modelling. The study revealed that the most dominant climatic factors i.e annual mean temperature, mean diurnal range, 
precipitation seasonality and iso-thermality with 23.2, 21.4,17.5 and 16.4% respectively were significantly influenced the potential distribution and establishment 
of rugose spiraling whitefly. Eastern coastal parts of Tamil Nadu, North-Eastern parts of Andhra Pradesh, Eastern coastal belts of Odisha, North-Western coastal 
belts of Kerala, South-Western coastal parts of Karnataka and Western coastal belts of Maharashtra and Gujarat were predicted the highest habitat suitability 
places/ regions. The present study data would help to formulate control measures for monitoring, surveillance and early pest warning of rugose spiraling whitefly 
and combating outbreaks well in advance in newer geographical locations. 
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MATERIALS AND METHODS

Occurrence data of rugose spiraling whitefly

 Data on geographic coordinates (i.e., latitude and 
longitude) of current pest occurrence is the primary requirement 
for ecological niche modelling. For this study, occurrence data 
of rugose spiraling whitefly were collected during the roving 
surveys between August 2016 and March, 2021 in different states 
of India and few from published literatures (Patel et al. 2020). 
Geographic coordinates for each occurrence point were compiled 
using the global positioning system (GPS) during the survey, and 
duplicate, neighbouring occurrence points were removed as per the 
requirements of MaxEnt model. Finally, 83 valid occurrence points 
were used in the study to predict the potential distribution of rugose 
spiraling whitefly under different climate change scenarios.

Environmental layers

 Data for 19 ‘bioclimatic’ variables for current climatic 
conditions (1970-2000) were collected from the World Clim database, 
version 1.4 (http://www.worldclim.org/) at a spatial resolution of 
2.5 min. Further, data were processed as per the requirement of the 
study using ecological niche modelling (ENM) software version 
1.4.4 (Warren et al. 2011). Multi-collinearity among the bioclimatic 
variables which hinder the species environmental relationships was 
assessed. Pearson correlation coefficient was used to classify and 
remove highly correlated variables in each pair-wise comparison of 
19 bioclimatic variables. When two variables had a value of Pearson’s 
coefficient |r|≥0.80, only one variable from pair considering its 
biological importance for rugose spiraling whitefly distribution and 
their predictive power (i.e. per cent contribution and Jackknife gain) 
was selected for model development. Finally, twelve bioclimatic 
variables viz., BIO1 (annual mean temperature), BIO2 (mean 
diurnal range), BIO3 (iso-thermality (BIO2/BIO7) (*100)), BIO5 
(maximum temperature of the warmest month), BIO6 (minimum 
temperature of the coldest month), BIO8 (mean temperature of the 
wettest quarter), BIO10 (mean temperature of the warmest quarter), 
BIO12 (annual precipitation), BIO14 (precipitation of driest month), 
BIO15 (precipitation seasonality), BIO18 (precipitation of the 
warmest quarter) and BIO19 (precipitation of the coldest quarter) 
were selected based on importance and processed for modelling. 
The future climate projection data were downloaded from the World 
Climate Database, version 1.4 (http://www.worldclim.org/) at a 
spatial resolution of 2.5 arc minutes on a global scale to predict the 
potential distribution of rugose spiraling whitefly in India in future 
climatic conditions. Statistically downscaled and bias-corrected 
future climate data were obtained from Climate Change Agriculture 
and Food Security (CCAFS) (http://www.ccafs-climate.org), at 
a spatial resolution of 2.5. The Global Climate Model (GCM) of 
Geophysical Fluid Dynamics Laboratory (GFDL) that represents 
simulations for four representative concentration pathways (RCP 
2.6, RCP 4.5, RCP 6.0 and RCP 8.5) from the Fifth Assessment 
of the Intergovernmental Panel for Climate Change (CMIP5) 
was selected for representing the future climatic scenario by the 
year 2050 and 2070. Each scenario represents the radiative force 
estimated for future climate based on the predicted greenhouse gas 
emissions. 

MaxEnt (Maximum entropy species modelling) (Version 
3.3.3k) was employed to predict the potential habitat distribution of 
rugose spiraling whitefly under current and future climate change 
scenarios (Phillips et al. 2006). MaxEnt model can estimate the 
probable potential distribution of species occurrence and randomly 
generated background points of environmental conditions by 
finding the maximum entropy distribution of species. The model 
settings were employed as convergence threshold (10−5), maximum 
iterations (5000) and a maximum number of background points 
(10000) to run the model. Based on background data, MaxEnt model 
can compare the environmental characteristics of presence records. 

Model development, validation and visualization

 The performance of the model was assessed using the 
area under the curve (AUC) of the receiver operating characteristic 
(ROC). The AUC value ranges from 0 to 1, which with values >0.9 
indicating excellent performance (Peterson et al. 2011). Response 
curves were used to study the relationships between bioclimatic 
variables and the predicted probability of the presence of rugose 
spiraling whitefly. Errors arising from the random splitting of data 
were minimized using tenfold cross-validation. The model was run 
with two quasi-independent subsets, i.e. training data (75%) and test 
data (25%) by randomly dividing sample data. Spatial mapping was 
carried out in Diva-GIS 7.3 software to produce suitability maps 
for each selected climate scenario (RCP 2.6, RCP 4.5, RCP 6.0 and 
RCP 8.5) to visualize current and future habitat suitability for rugose 
spiraling whitefly. Habitat suitability on the map of rugose spiraling 
whitefly was divided into five levels as high habitat suitability 
area (0.75–1.0), optimum habitat suitability (0.56–0.75), moderate 
habitat suitability (0.37–0.56), low habitat suitability (0.18–0.36) 
and unsuitable habitat (0.0–0.18).

RESULTS AND DISCUSSION

Potential distribution of rugose spiraling whitefly

 The most important bioclimatic variables for Aleurodicus 
rugioperculatus in India were temperature related variables such 
as annual mean temperature (23.2%), mean diurnal range (21.4%), 
iso-thermality (16.4%). Among the precipitation related variables, 
precipitation seasonality (17.5%) and annual precipitation (11.6%) 
had the highest contribution to the model (Table 1). In the Jackknife 
test, the mean temperature of the warmest quarter was found as a 
crucial variable with the highest values of training gain, test gain 
and area under the curve in the model (Fig. 1 & 2). Prabhulinga et al. 
(2017) predicted that the two major contributing climatic variables i.e 
the mean temperature of warmest quarter (BIO10) and precipitation 
seasonality (BIO15) contributes 32% and 23.7%, respectively for 
the potential distribution of Bemisia tabaci in North India. Similarly, 
Ramos et al. (2018) predicted the annual mean temperature (BIO1), 
precipitation seasonality (BIO15), mean annual precipitation 
(BIO12), precipitation of driest month (BIO14), mean diurnal range 
in temperature (BIO2) and temperature annual range (BIO7) are 
most contributing bioclimatic variables for the distribution of B. 
tabaci in Brazil. In Kenya, Mudereri et al. (2020) predicted that 
precipitation of the wettest month (BIO13), precipitation of the 
coldest quarter (BIO19), and annual temperature range (BIO7) were 
the most significant bioclimatic variables affecting the distribution 
of B. tabaci.

Maximum entropy modelling for predicting whitefly in India
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In the present study, MaxEnt model has predicted the 
highest suitability areas for rugose spiraling whitefly in Eastern 
coastal parts of Tamil Nadu, North-Eastern parts of Andhra Pradesh, 
Eastern coastal belt of Odisha, North-Western coastal belts of 
Kerala, South-Western coastal parts of Karnataka and Western 
coastal belts of Maharashtra and Gujarat. Moderate suitability 
areas for pest occurrence was predicted in southern parts of Tamil 
Nadu, Northern parts of Kerala, Western parts and central parts 
of Karnataka, Western coastal regions of Maharashtra and coastal 
regions of South Gujarat, South-Eastern parts of Andhra Pradesh, 
Odisha and Southern parts of West Bengal (Fig. 3). 

Ecological niche models perform based on the quantitative 
relationship between bioclimatic variables and species occurrences 
are used to predict areas of possible introduction, establishment 
and spread (Kumar et al. 2014b). Correlative models are widely 
used tools for assessing the risk of establishing various species 
including, insects, aquatic organisms, plants, human diseases, 
vertebrates and pathogens (Galdino et al. 2016). The model 
developed for rugose spiraling whitefly distribution was mainly 
determined by the temperature related bioclimatic variables like 
yearly mean temperature, mean diurnal range, iso-thermality, 
minimum temperature of the coldest month and precipitation 
related bioclimatic variables like annual precipitation, precipitation 

Table 1: Percent contribution of bioclimatic variables to distribution modelling of rugose spiralling whitefly Aleurodicus rugioperculatus in 
India

 Bioclimatic variables Present scenario (2020)                Future scenario (2050) Future scenario (2070)
RCP
2.6

RCP
4.5

RCP
6.0

RCP
8.5

RCP
2.6

RCP
4.5

RCP
6.0

RCP
8.5

Annual Mean Temperature (BIO1) 23.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mean Diurnal Range (BIO2) 21.4 24.4 24 27.5 25.3 25 21.8 27.3 24.5
Isothermality  (BIO3) 16.4 14.9 12.4 13.3 12.7 14.8 12.4 12.6 8.7
Minimum Temperature of Coldest Month (BIO6) 4.2 24.7 23.4 22.9 22.7 24.3 23.2 24.3 24.4
Annual Precipitation (BIO12) 11.6 8.0 9.5 7.5 8.3 2.5 11.7 7.7 0.0
Precipitation Seasonality (BIO15) 17.5 23.2 25.6 25.3 25.2 20.6 23.9 23.7 24.5
Precipitation of Wettest Quarter (BIO16) 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 10.7

RCP-representative concentration pathways; BIO-Bioclimatic variables.

Fig. 1 :  Relationship between six strongest environmental predictors and rugose spiralling whitefly probability of presence. Value shown are 
averages of 10 replicate runs
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of the coldest quarter and precipitation seasonality. These results 
provide a valuable theoretical basis for risk assessments and control 
of rugose spiraling whitefly. The decline in morning and evening 
relative humidity up to 7% compared to the previous year (2015), 
and rise in temperature over 2oC during summer might be another 
pre-disposing factor for the increase in rugose spiraling whitefly 
population and quick dispersal in a short period. Chakravarthy et 
al. (2017) observed that the prevailing warm weather conditions, 
28-310C temperature with 40-50% relative humidity and deficient 
rain favoured rugose spiraling whitefly. At the time of this study, 
very little is known about the developmental biology of A. 
rugioperculatus, near related species such as spiraling whitefly, 
Aleurodicus dispersus were observed to have a developmental range 
of 12-32oC and high mortality at suboptimal temperatures. 

Impact of climate change on future potential distribution of 
rugose spiraling whitefly 

 The potential distribution of rugose spiraling whitefly was 
predicted at different future climate change scenario (RCP 2.6, RCP 
4.5, RCP 6.0 and RCP 8.5) of 2050. In all RCP’s model was predicted 
with the AUC of 0.993 to 0.994. The highest relative contributions 
of the environmental variables to the predicted model were with a 
minimum temperature of the coldest month (22.7-24.7%), mean 
diurnal range (24.0-27.5%), precipitation seasonality (23.2-25.6 
%) iso-thermality (12.7-14.9%) and annual precipitation (7.5-
9.5%) (Table 1). The distribution of the pest in the 2050 scenario 
is similar to the present (year, 2020) climate prediction. However, 
highly suitable areas for pest occurrence was found in coastal parts 

Fig. 2 :  Relative importance of the environmental variables based on the Jackknife test. The figure shows each environmental variable's 
contribution to 'training gain' and 'AUC' both are measures of model's predictive ability. Values shown are averages of 10 replicate runs

Fig. 3 :  Occurence records used in the study to predict the potential distribution of rugose spiralling whitefly (a) and their distribution under 
present scenario (2020) in India

Maximum entropy modelling for predicting whitefly in India
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Fig. 4 :  Predicted potential distributions of rugose spiralling whitefly in India under 2050 scenario

Fig. 5 :  Predicted potential distributions of rugose spiralling whitefly in India under 2070 scenario
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of Tamil Nadu, Kerala, Karnataka and Gujarat (Fig. 4), and low to 
moderate suitability areas of the prediction is similar to that of the 
present scenario prediction (year, 2020). In the 2070 future climate 
scenario, the model was predicted with AUC of 0.992 to 0.993. 
Across all the RCP’s, environmental variables which contributes 
maximum to the model were with a minimum temperature of the 
coldest month (23.2-24.4%), mean daily range (21.8-27.3%), 
precipitation seasonality (20.6-24.5%) and iso-thermality (8.7-
14.8%). The contribution of annual precipitation to the model was 
in RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 were 2.5, 11.7 and 7.7%, 
0.0%, respectively. Interestingly, the future climate scenario of 
2070 in RCP 2.6 and RCP 8.5 environmental variable precipitation 
seasonality had 8 and 10.7% contribution to the model (Table 1). In 
the 2070, scenario across all the RCPs the prediction trend is more 
or less similar to the 2050 scenario. However, high suitability areas 
for pest occurrence were predicted in parts of Odisha and Andhra 
Pradesh (Fig. 5).

The distributions of the pest in climate scenarios in 
the present study are in more considerable agreement with the 
distribution report of the pest based on the field survey by Sundararaj 
and Selvaraj (2017). Mondal et al. (2020) attributed the possible 
reason for the establishment and the spread of rugose spiraling 
whitefly due to the import of agricultural materials from the new 
world suitable climatic conditions (tropical warm and humid 
climate) of the Indian subcontinent. In the present study, the pest 
distribution model prediction showed that most of India’s coastal 
regions and southern parts had maximum habitat suitability areas 
for the introduction and colonization of rugose spiraling whitefly. 
Rugose spiraling whitefly is widely distributed in the coastal regions 
is predicted due to the prevalence of congenial weather factors and 
the availability of coconut palms. Selvaraj et al. (2019) reported 
intensive coconut cultivation and transportation of infested seedling 
might be the possible region for its spread in entire South Indian 
states. The study further speculates the availability of a wide range 
of host plants in large areas and favourable weather conditions could 
be a reason for its distribution and spread (Sundararaj et al. 2021). 
Only one previous study by Chakravarthy et al. (2017) predicted 
that South West coastal regions of India viz., Kerala, Karnataka, 
Goa, Maharashtra and extended up to Maharashtra-Gujarat border is 
highly favourable for distribution and establishment using CLIMEX 
model concerning climatic factors. Besides, few isolated regions 
in Andhra Pradesh, Odisha, Bihar, Uttar Pradesh, Chhattisgarh, 
and West Bengal also found favourable climatic conditions for 
establishing rugose spiraling whitefly. 

MaxEnt model only provides estimates of relative 
suitability regardless of how the background sample is specified. 
However, several calibrations can be made, significantly influencing 
the model performance and, consequently, its accuracy (Kumar et al. 
2015). These calibrations include selecting background points and 
extent, the value of regularization multiplier and selection of feature 
types (Phillips et al. 2006). Considering these potential pitfalls in 
the modelling process, utmost care was taken in the present model 
during calibration, thus generating predictive models consistent with 
the current known distribution of the species. It can be observed in 
the quality of response curves and good validation results. 

CONCLUSION

Under future climate change scenarios, increased habitat 
suitability for rugose spiraling whitefly and expansion of its 
distribution in to newer geographical region in India may be noticed. 
Further, highly suitable area may turn in to excellent suitable area 
for the colonization of rugose spiraling whitefly under future climate 
change scenarios. This study provides deeper more profound insight 
into the potential distribution of rugose spiraling whitefly using a 
MaxEnt model. The habitat suitability map developed from the study 
will be useful for monitoring, developing forewarning strategies 
and formulating pest management policies for the rugose spiraling 
whitefly in coconut and many other crop plants. The present results 
could be an important guide to understand the potential changes in 
distribution and activity of rugose spiraling whitefly in response to 
current–future climate change scenarios. 
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