
Global warming and world soybean yields  

CAI CHENG-ZHI1*, LIAO CONG-JIAN1, XIAO DAN2, ZENG XIAO-SHAN3 and ZUO JIN3

1Economic Institute, Guizhou University of Finance and Economics, Guiyang
2Economic System Simulation Lab, Guizhou University of Finance and Economics, Guiyang 

3Guizhou Provincial Institute of Mountain Environment and Climate, Guiyang, China
*Ccorresponding author email : caichengzhi@mail.gufe.edu.cn 

Soybean crop has been attracting academic 
attention for improving its potential yield in the future 
particularly under climate change. The regression models 
constructed for estimating the yield of soybean in Far 
Eastern Federal District (FEFD) of Russia, which showed 
the soybean yield forecast for 2018 having a deviation 
from the actual yield in the range of 2.1-7.3 per cent 
based on 2007-2017 data (Stepanov et al., 2019). Using 
the AquaCrop model, Tovjanin et al., (2019) estimated 
the impact of climate change on main field crops (maize 
and soybean) in the Republic of Serbia, and found an 
increase in maize (1 and 1.3 t ha-1) and soybean (1.9 and 
2.8 t/ha) yields for the 2041-2070 and 2071-2100 periods. 
Fuzzo et al., (2020) proposed a new method for predicting 
soybean yield in Parana state of Brazil for 2002-2003 to 
2011-2012, and got the RMSE value ranging from 30.8 
to 57.2 kg ha-1. Historical series (2000-2019) of climate 
and soybean yield data in Mato Grosso do Sul state of 
Brazil was used for multiple linear regression modelling, 
which showed that the climate variable with the greatest 
negative influence on soybean yield (r = - 0.54) was due 
to water stress in December (Aparecido et al., 2020) 
month. Citing the soil water balance modeled, Petry 

et al. (2020) investigated the crop coefficients, grain 
yield prediction, and economic return of soybean grown 
in Brazil at different levels of water deficit and price 
quotations, and found that crop yield and economic return 
were higher at 75 per cent of total available water (TAW) 
than the others. Using a mathematical model, Rebilas et 
al. (2020) estimated the dependence of seed yield losses 
upon cutting height variations, and found that all were 
below 15 g/m2 even for the highest cutting level (15 cm) 
applied during harvest. Walikar et al., (2018) and Singh 
et al. (2010) evaluated “SOYGRO” model for predicting 
growth and yield of soybean in Madhya Pradesh and 
Haryana provinces in India. There is no lack of research 
reports on the yield or its potential of soybean modelled 
and partly related to climatic factors, but most are based 
on the principle of production function for specific variety 
from static biological dimension and at local or regional 
level, while few based on the theory of stochastic process 
for generic soybean from dynamic evolutionary dimension 
and at global level. Thus in this paper, ‘time series’ model 
ARIMA (Autoregressive Integrated Moving Average) 
based on stationary stochastic process to estimate potential 
yield of world soybean under global warming was used 
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for projecting soybean yield on its historic yields basis. 
It is also aimed to provide information on directing the 
production of soybean in the world facing global food 
insecurity deteriorated by the contradiction between the 
increase of human demand and the degradation of arable 
land. 

MATERIALS AND METHODS

Datasets used

 Annual global mean temperature (℃), average 
and top (national) yields of world soybean from 1961 to 
2018 are employed to project and analyze their futures 
facing global warming. As shown in Fig. 1, from 1961 to 
2018: annual global mean temperature rose in fluctuation; 
average yields of world soybean rose more steadily than 
the top yields. ‘Average yield’ means average yield of 
soybean worldwide while ‘top yield’ comes from specific 
countries whose yield of soybean countrywide topped 
in the world in given year in the following. Canada 
enjoyed the yields of soybean countrywide being top 
in the world in 1961; so did Mexico in 1962, 1963 and 
1965; Paraguay in 1964, 1966, 1968 and 1969; Italy in 
1967, 1973, 1974, 1977, 1984, 1986, 1989 to 1999, 2001, 
2002 and 2005; Ethiopia PDR in 1970, 1971, 1972, 1979, 
1980, 1981,1982, 1983, 1985, and 1987, 1988, 1989; New 
Zealand in 1975, 1976 and 1978; Switzerland in 2000; 
Egypt in 2003; Turkey in 2004 and 2006 to 2018.

Methodology applied

 ARIMA model is a valuable tool used for 
projecting the futures of ‘time series’ variable, in 
which it is assumed that if a stochastic process has 
some numbers of unit root it can be converted into a 
stationary process of autoregressive moving average 
after same times of differencing required for producing 
the stationarity of series. A simplified representation of 
the model is ARIMA (p,d,q), where p is the number of 
autoregressive parameters, d is the order of differencing 
required for producing stationarity, and q is the number 
of moving average parameters (Jensen, 1990). The order 
of differencing refers to the number of times that each 
previous observation is subtracted from each successive 
observation until no systematic decrease or increase in 
the level of the series remains as it drifts. The noise in a 
time series drifts up and down across time. A complete 
representation of ARIMA model is mathematically 

written as formula (1).

                       (1)

 In formula (1), besides p, d and q above explained, 
t refers to the time unit while L to the lag operator, 
to stationary autoregressive operator, to reversible 
moving average operator, and  to target variable. 

 The Autoregressive model represents a process 
in which the observation at time t is a function of the 
previous observation t-1, while a Moving Average model 
represents a process in which an observation is a function 
of the previous random shock.

 It is assumed that the yields of world soybean in 
the past, be a ‘time series’ variable as it generally rises 
over time due to continuous improvement of the inputs 
to its production through scientific and technical means. 
In other words, the rise of world soybean yield in a long 
run is of a stochastic process that hints some inevitable 
trend behind a large number of casual events. Therefore, 
dynamic potential yield of world soybean in the future 
can be estimated by ‘time series’ approach more suitable 
than any model based on production function considering 
various influential factors. Thus, in this investigation, 
ARIMA model was used for projecting the yields of 
world soybean in 2019 to 2028 based on the yields from 
1961 to 2018 in principle limiting the number of samples 
projected less than 15 per cent of totality. In application, 
the projection of world soybean yields is undertaken 
following the steps: firstly, to produce logarithmic values 
of world soybean yields from 1961 to 2018 to eliminate 
heteroscedasticity, to test the stationarity of ‘time series’ 
and establish ‘stationary series’ through differencing 
if not stationary; secondly, to establish such five basic 
models as ARMA(1,2), ARMA(1,1), AR(1), MA(2) and 
MA(1) to fit world soybean yields from 2009 to 2018 in 
principle equating the number of fitted samples to that to 
be projected, and compare fitted values with actual yields 
to evaluate the fitness; finally, to select and validate 
optimum basic model used for ARIMA (p,d,q) modelling 
to project world soybean yields in 2019 to 2028. In same 
way, annual global mean temperature by 2028 has been 
projected using ARIMA model. Further, the impacts of 
global warming on the yields of world soybean has been 
analyzed using regression model.

Global warming and world soybean yields 
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RESULTS AND DISCUSSIONS

Projecting average yields of world soybean in 2019 to 
2028     

 Through testing it has been shown that logarithmic 
series of average yields of world soybean from 1961 to 
2018 happen to be stationary with the t-statistic value of 
-5.573534 and critical value of -4.127338 at 1% level in 
the ADF unit root test. Thus, five basic models used for 
fitting average yields of world soybean from 2009 to 2018 
are established on the basis of logarithmic yields values. 
Their equations are shown in the Table 1. The fitness 
of five basic models in Table 1 has been represented as 
the percentage of fitted value increased or decreased in 
comparison with actual yield (i.e. residual in the model), 
and resulted with such mean error (ME) from 2009 to 
208 as +1.81% of ARMA(1,2), +2.27% of ARMA(1,1), 
+2.31% of AR(1), +2.93% of MA(2) and +1.30% of 
MA(1). Therefore, MA(1) basic model with the best 
fitness was used for ARIMA (0,0,1) modelling to project 
average yields of world soybean in 2019 to 2028.

ARIMA model used for projecting average yields of 
world soybean in 2019 to 2028    

    As shown in Table 2, absolute value of inverted 
MA root (0.67) was below 1.00, which has shown the 
ARIMA (0,0,1) model’s is stationarity. Thus, average 
yields of world soybean in 2019, 2020, 2021, 2022, 
2023, 2024, 2025, 2026, 2027 and 2028, projected using 
the ARIMA(0,0,1) model, have to be 2841, 2887, 2933, 
2979, 3027, 3075, 3124, 3174, 3224 and 3276 kg ha-

1, respectively. For example to test the performance of 
ARIMA model, average yield of world soybean in 2018 
projected using the ARIMA(1,0,0) model based on the 
yields from 1961 to 2017, was 2878 kg ha-1 being only 
3.12 per cent higher than the actual yield.

Projecting top yields of world Soybean in 2019 to 2028

 Those countries that enjoyed top yields of world 
soybean in some given years, represent various casual 
events behind which an inevitable law limits average yield 
meeting the top yields. In this case, the variation of top 
yields of world soybean in long term has been deemed as 
stochastic process. This study does not aim here to reveal 
the effect of climatic factors on the growth of soybean 

in any specific country owning top yield in the world, 
but to explore general trend of top yields of soybean on 
global scale. Therefore, top yields of world soybean in 
2019 to 2028 have been projected using ARIMA model 
for projection of the yields from 1961 to 2018.

Models used for fitting top yields of world soybean from 
2009 to 2018    

 It has been tested that the logarithmic series 
of top yields of world soybean from 1961 to 2018 was 
stationary (in ADF unit root test t-statistic value = 
-5.564368 while critical value = -4.127338 at 1% level). 
Thus, five basic models used for fitting top yields of world 
soybean from 2009 to 2018 have been established using 
logarithmic values of the yields, whose equations have 
been shown in the table 3. In the same way, the fitness 
of five basic models in Table 3 has resulted with such 
ME between 2009 and 2018 as -3.08% of ARMA(1,2), 
-1.77% of ARMA(1,1), +0.61% of AR(1), -0.23% of 
MA(2) and -0.21% of MA(1). Therefore, MA(1) basic 
model having the best fitness has been used for ARIMA 
(0,0,1) modelling to project top yields of world soybean 
in 2019 to 2028. 

ARIMA model used for projecting top yields of world 
soybean in 2019 to 2028    

   As shown in Table 4, absolute value of inverted 
MA root (0.78) is below 1.00, showing stationary ARIMA 
(0,0,1) model. Thus, top yields of world soybean in 2019, 
2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027 and 
2028, has been projected using ARIMA(0,0,1) model 
resulting in 4324, 4375, 4427, 4479, 4532, 4586, 4640, 
4695, 4751 and 4807 kg ha-1, respectively. For another 
example, the ARIMA(1,0,0) model based on top yields of 
world soybean from 1961 to 2017 was used for projecting 
the top yield in 2018 resulted with 4468 kg ha-1 being 
statistically acceptable 4.83 per cent higher than actual 
one.

Global warming and world soybean yields

 Theoretically, there must exist certain inherent 
relationship between annual global mean temperature 
and the yields of world soybean because temperature 
has been the one of essential factors for soybean crop 
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growth and yield. Though all climatic factors viz., 
radiation, temperature, precipitation and gases each have 
their respective contribution to the growth and yield of 
world soybean, but only the rise of annual global mean 
temperature has been observed and proved to be the result 
of higher CO2 concentration in the atmosphere. Therefore, 

the contributions of solar radiation, precipitation and gases 
each year can be considered as constant (in modelling), to 
the yield of world soybean including all varieties grown 
in any season.

 In empirical analyses, it is causality-tested that 

Table 1: Equations of five basic models for fitting average yields of world soybean from 2009-18

Model Equation 

ARMA (1,2)

ARMA (1,1)

AR (1)

MA (2)

MA (1)

Note: ‘ave’ stands for ‘average yield of world soybean’
Table 2: Regression of ARIMA (0,0,1) model for avg. yields of world soybean in 2019-28

Variable Coefficient Std. Error t-Statistic Probability  
C 0.015809 0.002370 6.671721 0.0000
MA(1) -0.668173 0.098305 -6.796912 0.0000
R-squared 0.375089     Mean dependent var 0.015878
Adjusted R-squared 0.363727     S.D. dependent var 0.064832
S.E. of regression 0.051714     Akaike info criterion -3.051705
Sum squared resid 0.147091     Schwarz criterion -2.980019
Log likelihood 88.97359     Hannan-Quinn criter. -3.023845
F-statistic 33.01253     Durbin-Watson stat 2.229911
Prob(F-statistic) 0.000000 /
Inverted MA Roots 0.67 /

Fig. 1: Annual global mean temperature (℃), average and top yields (kg ha-1) of world soybean from 1961 to 2018

Global warming and world soybean yields 
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there exist Granger causalities between annual global 
mean temperature and average yield (P = 0.0009 while 
F-Statistic = 8.00150) and top yield (P = 0.0821 while 
F-Statistic = 2.62690) of world soybean from 1961 
to 2018; and it is Co-integration-tested that there exist 
long-run equilibrium relationships between annual global 
mean temperature and average yield (with P of 0.0000 and 
t-Statistic of 106.0989) and top yield (with P of 0.0000 

and t-Statistic of 221.5318) of world soybean from 1961 
to 2018. Thus, taking annual global mean temperature as 
independent (X) while world soybean yield as dependent 
(Y), the effect of global warming on the yields from 
1961 to 2018 is regression-modelled with constant and 
respectively shown as in formula (2) of the average and 
formula (3) of the top.

Table 3: Equations of five basic models for fitting top yields of world soybean from 2009-18

Model Equation 

ARMA (1,2)

ARMA (1,1)

AR (1)

MA (2)

MA (1)

Note: ‘top’ stands for ‘top yield of world soybean’.

Table 4: Regression of ARIMA (0,0,1) model for top yields of world soybean in 2019 -28

Variable Coefficient Std. Error t-Statistic Probability  
C 0.011776 0.004799 2.453848 0.0173
MA(1) -0.777522 0.082931 -9.375541 0.0000
R-squared 0.375433     Mean dependent var 0.012393
Adjusted R-squared 0.364078     S.D. dependent var 0.190115
S.E. of regression 0.151607     Akaike info criterion -0.900592
Sum squared resid 1.264158     Schwarz criterion -0.828906
Log likelihood 27.66689     Hannan-Quinn criter. -0.872733
F-statistic 33.06105     Durbin-Watson stat 1.995733
Prob(F-statistic) 0.000000 /
Inverted MA Roots 0.78 /

Fig. 2: Average and top yields (kg ha-1) of world soybean in 1961 to 2028

CHENG-ZHI et al.
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               (2)

For formula (2), R squared = 0.819 while F = 124.851 and 
Sig. = 0.000.

 As shown in formula (2), global warming exerts 
statistically significant positive impact (at 0.01 level) on 

average yield of world soybean from 1961 to 2018 with 
Quadratic function best simulated having one of two 
highest R squared values in comparison with Linear of 
0.815, Logarithmic of 0.813, Inverse of 0.810, Cubic of 
0.819, Compound of 0.766, Power of 0.766, S of 0.765, 
Growth of 0.766, Exponential of 0.766 and Logistic of 
0.766, and higher F value than the Cubic with 124.739. 

Fig. 3: Global mean temperature (℃) and ratio (%) of average to top of world soybean yields in 1961 to 2028

Table 5: Equations of five basic models for fitting annual global mean temp from 2009-18 

Model Equation 

ARMA (1,2)

ARMA (1,1)

AR (1)

MA (2)

MA (1)

Note: ‘tem’ stands for ‘annual global mean temperature’.

Table 6: Regression result of ARIMA (1,0,1) model for annual global mean temp in 2019-28 

Variable Coefficient Std. Error t-Statistic Probability  
C 0.001904 0.000123 15.51689 0.0000
AR(1) 0.029719 0.132668 0.224014 0.8236
MA(1) -0.981233 0.017452 -56.22461 0.0000
R-squared 0.481119     Mean dependent var 0.001415
Adjusted R-squared 0.461539     S.D. dependent var 0.018431
S.E. of regression 0.013524     Akaike info criterion -5.716567
Sum squared resid 0.009694     Schwarz criterion -5.608066
Log likelihood 163.0639     Hannan-Quinn criter. -5.674502
F-statistic 24.57145     Durbin-Watson stat 2.023563
Prob(F-statistic) 0.000000 /
Inverted AR Roots 0.03 /
Inverted MA Roots 0.98 /

Global warming and world soybean yields 



373Vol. 23, No. 4

                    (3).

For formula (3), R squared = 0.414 while F = 39.607 and 
Sig. = 0.000.

 As shown in formula (3), global warming exerts 
statistically significant negative impact (at 0.01 level) 
on top yield of world soybean from 1961 to 2018 having 
S function best simulated with higher R squared value 
than Linear with 0.378, Logarithmic with 0.380, Inverse 
with 0.382, Quadratic with 0.394, Cubic with 0.394, 
Compound with 0.409, Power with 0.412, Growth with 
0.409, Exponential with 0.409 and Logistic with 0.409.

 To see further global warming effects on the 
yields of world soybean in 1961 to 2028, stationary 
logarithmic series of annual global mean temperature 
(in ADF unit root test t-statistic value = -6.996297 while 
critical value = -4.127338 at 1% level) and ARMA (1,1) 
basic model with the lowest ME of -0.08% between fitted 
values and actual temperatures from 2009 to 2018 among 
five kinds shown in Table 5, have been used for ARIMA 
(1,0,1) modelling (table 6) to project the futures by 2028.

 As shown in Table 6, absolute values of both 
inverted AR root (0.03) and inverted MA root (0.98) have 
been all below 1.00, showing the ARIMA (1,0,1) model 
stationary. Annual global mean temperatures in 2019 to 
2028 have been projected to be from 15.05 increasingly to 
15.31℃. For example, annual global mean temperature in 
2018 projected using the ARIMA(1,0,2) model based on 
the temperatures from 1961 to 2017, is 15.12℃ and only 
1.07% higher than actual one. Then regression model with 
constant has been used for simulating the dependence of 
world soybean yields on annual global mean temperature 
in 1961 to 2028, which reveals that global warming exerts 
more positive effect on the average yield with Power 
function (having b1 coefficient of 8.309 and R squared 
of 1.000) than that on the top yield with Power function 
(coefficient b1 = 6.188 while R squared = 1.000). The 
result was consistent with the scenario from 1961 to 2018 
in terms of trend narrowing the gap between average and 
top of world soybean yields.

Comparison between actual and simulated yields of 
world soybean

As shown in figure 2: actual average yields of world 
soybean increased with slight fluctuation from 1961 to 
2018 while average yield extrapolated rises in a curve 

trend in 1961 to 2028; actual top yields of world soybean 
fluctuated in rise from 1961 to 2018 while top yield 
extrapolated rises in a curve trend in 1961 to 2028. 

Global mean temperature and ratio between average 
and top of world soybean yields in 1961 to 2028

 As previously mentioned, the ‘top yield’ can be 
considered potential limit of the ‘average yield’ because 
in a long run the latter will ‘chase after’ but never meet 
the former. Though ‘average yield’ rises generally faster 
but especially slower than ‘top yield’. 

 According to the projections, average yields of 
world soybean in 2019, 2020, 2021, 2022, 2023, 2024, 
2025, 2026, 2027 and 2028 are 65.70, 65.99, 66.25, 66.51, 
66.79, 67.05, 67.33, 67.60, 67.86 and 68.15 per cent of 
the top ones, respectively. The gap between these two 
kinds of world soybean yields slowly narrows because the 
average generally rises at higher rate than the top yields.

 As shown in Fig. 3, actual annual global mean 
temperatures rose in fluctuation from 1961 to 2018 while 
the extrapolated temperature rises in a linear trend in 
1961 to 2028, so did actual ratio of average to top of 
world soybean yields and so does the extrapolated ratio; 
from 1961 to 2018 and 2028 the ratio of average to top of 
world soybean yields was  between 30  and 70 per cent 
(from the maximum of 69.23% in 2010 to the minimum 
of 30.75% in 1989) and shown a slightly increasing trend 
in fluctuation, which implies that by 2028 the average 
yield will increasingly chase after the top yield as it rises 
faster than the latter, partly due to more positive effect of 
global warming on the average than that on the top yield 
in 1961 to 2028 according to their values of coefficient 
b1 in Power function. As global warming exerts positive 
effect on average yields while negative on top yields of 
world soybean or more positive effect on the average than 
that on the top yields, the opportunities for improving 
production should be dependent on both high and low-
yielding countries.

CONCLUSIONS

The models based on production function are 
better applicable to microscopic and static scenario in 
which the smaller the coverage is, the more precise the 
estimation will be. In a long run like a population increase 
in ecosystem, any crop’s yield over time theoretically 
shows a trend of S-shaped curve, where the crop’s yield 
is positively accelerated before the turn-point, while 
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negatively accelerated after that until the acceleration 
stopped eventually. For the crop whose current average 
yield is in low place before the turn-point of such 
S-shaped curve (e.g. below 30% of potential limit), the 
opportunities for improving global production should 
be mainly dependent on raising the crop yield potential 
in high-yield countries with high efficiency; while for 
those in high place after the turn-point of such S-shaped 
curve (e.g. above 70% of potential limit) the opportunities 
should be mainly dependent on low-yield countries 
through the amelioration of arable land with high input 
and output, and for those in middle place around the turn-
point of such S-shaped curve (e.g. between 30 and 70% 
of potential limit) the opportunities should be dependent 
on both high and low-yielding countries with integrated 
efficiency.
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