Nakshatra based rainfall variability, trends and its influence on rice-wheat production - A case study over two sites in Bihar, India

N. SUBASH*, S.S. SINGH and NEHA PRIYA

Division of Crop Research, ICAR Research Complex for Eastern Region, ICAR Parisar Bihar Veterinary College P.O., Patna 800 014, Bihar

Email: <u>n_suby@rediffmail.com</u>, <u>n_suby@sify.com</u>

ABSTRACT

An attempt has been made to study the variability and trends of rainfall during nakshatra periods for two sites, Patna and Samastipur of Bihar and verified the relation of four traditional knowledge/ proverbs/ beliefs of nakshatra based rainfall pattern, which are popular in this part of the region with rice-wheat productivity. Maximum rainfall and highest rainy days occurred during punarvasu nakshatra (July 6 – July 19) over both sites followed by pushya (July 20- Aug 2). The coefficient of variation of rainfall shows below 100 % from aridhra (June 22 – July 5) to uttara (Sept 13-26) at Patna and from rohini to purbha (Aug 31- Sept 12) for Samastipur. A significant increasing trend of 0.965 mm y⁻¹ and decreasing trend of -0.857 mm y⁻¹, respectively have been noticed during pubbha and hasta at Patna. However, a significant increasing trend of 1.536 mm y⁻¹ and decreasing trend of -0.774 mm y⁻¹, respectively have been noticed during aridhra and hasta at Samastipur.

Keywords: Nakshatra, *R*ainfall variability, Mann-Kendall non-parametric test, Productivity index, Rainfall anomaly index, Correlation

There is considerable traditional/proverbial knowledge about the variability of rainfall patterns and traditional ricewheat productivity, since rainfed cultivation has been carried out for several centuries in this region. The periods used by the farmer are however, not weeks or months but so-called 'nakshatras' which are 13 or 14 days periods which are also based on the solar calendar (IMD, 1998). The nakshatras stand for the twenty seven constellations through which the sun passes in a year. Hence the period of each nakshatra is about 14 days. The nakshatra commences when the sun enters the specific constellation. The knowledge of the variability is thus these time units rather than weeks or months (Gadgil and Rao, 2000). Golakia (1992) compiled proverbs from different communities for predicting the moods of monsoon over Saurashtra. Varshneya et al (2002) developed nakshatravarsha almanac for Maharashtra and this was designed for farmers to predict rainfall distribution in next rainy season. The techniques gave prediction of onset and withdrawal of monsoon and distribution of rainfall about six months in advance. Based on pictorial assistance, it is possible for the farmers to change the crops to decide area under kharif and rabi season. It is found that there is relative advantage of this calendar for Maharashtra (Vaidya, 2004). Kanani (2006) tested traditional methods of weather forecasting in Gujarat using the participatory approach. They formed a group called "Varsha Vigyan Mandal" including researchers and farmers of Junagadh and validated traditional beliefs across the region. Thus, nakshatra based rainfall periods have more influence

on rice and wheat production and studies on variability and trends of rainfall based on nakshatra periods and its influence on rice-wheat production are lacking. In the present study, variability and trends of rainfall during nakshatra periods for two sites viz., Patna and Samastipur, representing different agro-climatological zones of Bihar have been analyzed. Some of the traditional/proverbial knowledge based on nakshatra period rainfall and rice-wheat productivity is also verified over these two sites.

MATERIALS AND METHODS

The daily rainfall data recorded at IARI regional station, Pusa, Samastipur; and Agricultural Research Institute, Patna during the period 1960-2008 were collected. The detailed methodology adopted for quality, completeness and homogeneity was discussed in detail Parthasarathy *et al.* (1993, 1995a, b). These daily rainfall data were converted into nakshatra period rainfall and computed mean, standard deviation and coefficient of variation. The productivity of rainy season (*kharif*) rice over the selected sites were taken from the Directorate of Rice, Ministry of Agriculture, Govt. of India and are available on-line at <u>http://www.dacnet.nic.in</u> and the productivity of wheat were taken from the Directorate of Statistics and Evaluation, Govt. of Bihar.

Trend analysis

Mann-Kendall (MK) (Mann, 1945; Kendall, 1975) is a

*Present address: Project Directorate for Farming Systems Research, Modipuram- 250110, Meerut, UP

June 2011]

 Table 1: Mean rainfall and rainy days and its standard deviation (SD) and coefficient of variation (CV) during nakshatra period over Patna and Samastipur districts of Bihar

Nalshita	Pariod	Patna				Samas tipur							
		Rainfall		Rainydays		Rainfall		Rainy days					
		Mean (nm)	2D (mm.)	CV (%)	Mean (mm)	5D (mm)	CV (%)	Mean (nm.)	SD (mm.)	CV (%)	Mean (mm)	8D (000)	CV (%)
Ashwini	April 13 to April 24	61	91	148	0.6	0.9	152	101	14.8	146	0.8	12	1+1
Bharani	April 27 to May 10	13.5	21.7	161	09	1.0	117	21 1	23.6	112	1.4	13	87
Knitika	May 11 to 24	21.3	30.2	142	12	13	113	311	35.6	114	1.6	15	95
Rohini	May 25 to June 7	26.4	39.8	151	1.4	1.4	94	36.8	34.9	95	2.0	1.6	78
Mrigachita	June 8 to 21	60 1	64.6	108	2.7	22	80	762	54.2	71	35	22	62
Aridhaa	June 22 to July 5	1145	963	83	4.6	22	47	1285	86,8	68	5.0	22	44
Pumunaru	July (no July 19	174.0	1103	63	63	2.7	+1	1396	991	62	6,6	2.6	40
Pulya	July20 to Aug2	131.0	98.9	76	59	25	43	1391	1123	81	61	25	+ 1
Ashiha	Aug) to Aug 16	115.8	95.0	82	5.6	2.4	43	1324	110 5	84	5.6	3.0	54
Mabha	Aug17 to Aug30	131.1	733	56	5.8	21	36	135.6	1162	86	5.4	2.4	44
Puthla	Aug 31 to Sep 12	90.3	67.8	75	4.6	23	51	1060	88.9	84	51	23	45
Uttara	Sep13 to Sep26	90.4	82.8	91	4.0	21	51	1042	1058	102	42	21	49
Hasta	Sep 27 to Cb 19	76.4	833	112	2.8	2.0	74	77.8	103 5	133	2.8	21	74
C hitta	Oct 10 to Oct 23	199	451	226	0.9	12	139	22.0	41.6	189	0.9	12	129
Swathi	Oct 24 to Nov 5	+7	12.8	271	03	0.8	240	4.8	12.6	265	03	0.8	224
Vichalia	Novi to Nov18	33	15.4	278	03	0.8	249	3.7	10.5	284	03	0.7	253
Anuralha	Nov19 to Dec2	1.8	51	289	02	05	292	3.7	10.5	284	0.0	0.0	0
Jyne http:	Dec 3 to Dec 15	0.9	+2	482	01	03	523	1.6	61	380	01	0.4	318
Moola	Dec 14 to Dec 28	33	91	272	03	0.7	204	32	6Ī	193	0.4	0.7	198
Punachada	Dec 29 to Jan 10	33	39	181	0.4	0.7	160	33	83	255	03	0.6	191
Uttana hada	Jan11 to Jan23	49	8.0	161	05	0.7	147	4.0	63	160	0.4	0.6	151
SELVERA	Jan 24 to Fab 5	52	81	155	03	0.9	140	6.0	101	149	0.6	0.8	144
Dhanishta	Fabito Fab 18	7.0	12.6	181	0.5	0.7	147	72	12.6	174	0.6	0.9	154
Shata bhirta	Fab 19 to Mar 3	58	10.7	186	οŝ	0.9	14	42	6.8	ia	05	0.8	137
Poons Bhadra	Mart to Mar17	4.6	10.6	231	03	0.7	194	23	57	24.6	02	0.6	245
Uttara Bhadra	Mar 18 to Mar 30	29	33	188	03	0.6	217	39	81	206	0.4	0.7	198
Renati	Mar 31 to April 12	13	4.0	266	02	0.5	290	4.0	8.8	221	03	0.7	201

nonparametric trend test basically involves the ranks obtained by each data in the data series and is a statistical yes/no type hypothesis testing procedure for the existence of trends and does not estimate the slope of trends. The magnitude of the trends was estimated using Sen Slope (Sen, 1968) and according to Hirsch *et al.* (1982) Sen's method was robust against extreme outliers. The Mann-Kendal test (Mann (1945) and Kendall (1975)) has been used to detect trends in hydrometeorological time series data.

Productivity variability

The production of rice depends on type of soil, seeds used, crop area, availability of irrigation facilities, fertilizers, pesticides and also on the government incentives to the farming sector during a year as well as on the meteorological parameters such as rainfall, temperature, relative humidity and solar energy. The non-meteorological parameters i. e., the total technological inputs to the farming sector have been growing steadily and are difficult to quantify. Therefore, to know the pattern of trends and to quantify the growth rate of total technological inputs to the agricultural sector the actual productivity was fitted into a linear as well as any other best fit (Subash *et al.*, 2009; Subash and Ram Mohan, 2010).

To normalize the productivity, another index, the Productivity Anomaly Index (PAI) was taken as the

percentage of the technological trend productivity to the actual productivity. The PAI for the i^{th} year is

Where PAI_i is the rice/wheat productivity anomaly index for the ith year, P_i is the actual rice/wheat productivity for the *ith* year and TP_i is the technological trend rice/wheat productivity for the ith year.

RESULTS AND DISCUSSION

Normal nakshatra based rainfall pattern and its variability

Mean nakshatra periods rainfall and rainy days and its standard deviation (SD) and coefficient of variation (CV) for the selected stations are given in Table 1. Maximum rainfall and highest rainy days occurred during punarvasu nakshatra (July 6 – July 19) over both sites followed by pushya (July 20- August 2). Even though mean rainfall shows that rainfall received in all the nakshatras, as far as agricultural operations/management is concerned, fairly good amount of rainfall have been received from mrigashira (June 8-21) to hasta (September 27 – October 9) at Patna and rohini (May 25- June 7) to hasta at Samastipur. Moreover these periods

Sl Nakshatra		Rainfall				Rainy days			
No.				Sam	astipur	Patna		San	astipur
		Z	Q	Ζ	Q	Z	Q	Ζ	Q
1	Ashwini	-0.28	0.000	0.49	0.000	-0.43	-0.0073	0.94	0.0097
2	Bharani	0.41	0.000	0.64	0.000	0.46	0.0049	1.17	0.0151
3	Kritika	0.75	0.000	093	0.100	0.90	0.0089	1.77	0.0276
4	Rohini	1.04	0.078	121	0321	1.63	0.0216	1.29	0.0271
5	Mirigashira	-0.13	0.000	0.43	0.203	-0.64	-0.0027	-0.36	-0.0040
6	Aridhra	1.50	1.179	1.87	1.536	2.27	0.0400	193	0.0467
7	Punarvasu	0.64	0.817	1.03	1.029	-0.60	-0.0185	0.42	0.0078
8	Pushya	-0.89	-0.817	-0.28	-0.348	-1.05	-0.0266	0.03	0.0064
9	Aslesha	1.11	0.795	034	0.264	0.93	0.0211	-0.13	-0.0020
10	Makha	0.74	0.529	-1.01	-0.856	-1.15	-0.0266	-0.18	-0.0063
11	Purbha	1.77	0.965	-0.22	-0.054	0.79	0.0257	80.0	0.0006
12	Uttara	-0.39	-0.263	-0.64	-0.389	-0.62	-0.0148	-0.97	-0.0247
13	Hasta	-1.83	-0.857	-1.86	-0.774	-1.61	-0.0310	-1.57	-0.0313
14	Chitta	-0.72	0.000	0.72	0.000	-0.75	-0.0032	0.87	0.0096
15	Swathi	-0.38	-0.146	-0.55	-0.022	037	0.0090	80.0	0.0010
16	Vishaka	0.23	0.043	-0.03	-0.012	0.18	0.0011	030	0.0003
17	Ammadha	-0.54	-0.026	-0.03	-0.022	-0.34	-0.0015	0.00	0.0000
18	Jyeshta	-0.19	-0.010	-0.63	-0.025	-0.16	-0.0002	-0.38	-0.0020
19	Moola	-0.89	-0.011	-0.15	0.000	-0.78	-0.0052	-0.27	-0.0030
20	Purvashada	-0.10	-0.025	-0.62	-0.060	-0.03	-0.0028	0.25	-0.0016
21	Uttarashada	-0.41	-0.030	-0.46	-0.022	-0.17	-0.0019	0.22	-0.0032
22	Sravana	-0.87	-0.051	-0.24	-0.016	-0.64	-0.0048	0.10	-0.0015
23	Dhanishta	0.07	0.013	0.43	0.021	-0.13	-0.0010	0.87	0.0083
24	Shatabhista	0.25	0.057	0.84	0.072	0.53	0.0023	097	0.0112
25	Poorva Bhadra	-1.60	-0.067	-0.72	-0.098	-1.51	-0.0069	0.61	0.0080
26	Uttara Bhadra	-1.10	-0.103	-0.55	-0.137	-1.61	-0.0130	-0.28	-0.0071
27	Revati	0.34	0.037	0.77	0.167	0.34	0.0048	1.09	0.0104

Table 2: MK test results of rainfall and rainy days at Patna and Samastipur districts (Z-MK statistics and Q-Sen's Slope)

received ≥ 2 rainy days for both sites. The CV of rainfall shows below 100 % from aridhra (June 22 – July 5) to uttara (September 13-26) at Patna and from rohini to purbha (August 31- September 12) at Samastipur. This indicated that 7 and 8 nakshatra periods received somewhat dependable rainfall over Patna and Samastipur, respectively. Punarvasu nakshatra receives lowest CV of 62 and 63 per cent, respectively for Patna and Samastipur districts.

Trends of nakshatra based rainfall pattern

Time series of nakshatra rainfall and their trends at different stations are shown in Figs. 1 and 2. The results of the MK tests on rainfall and rainy days are given in Table 2. As far as rice-wheat system is concerned, based on normal crop calendar and growing period, kritika to swathi (13 nakshatras) are considered for rice and vishaka to uttara bhadra (11 nakshatras) are considered for wheat. Out of 13 nakshatras during rice, rainfall shows decreasing trend in 6 nakshatras (mrigashira, pushya, uttara, hasta, chitta & swathi) at Patna and 6 nakshatras (pushya, makha, purbha,

uttara, hasta & swathi) at Samastipur. A significant increasing trend of 0.9 mm y⁻¹ and decreasing trend of -0.0.9 mm y⁻¹, respectively have been noticed during purbha and hasta at Patna. However, a significant increasing trend of 1.5 mm/ year and decreasing trend of -0.8 mm y⁻¹, respectively have been noticed during aridhra and hasta at Samastipur. This significant decreasing trend of rainfall during hasta nakshatra may affect the subsequent wheat crop, particularly during germination. As far as during wheat growing period is concerned majority of nakshatra periods showed decreasing trend of rainfall for both sites. But none of the trends are statistically significant. During aridhra nakshatra a significant increasing trend in number of rainy days at the rate of 43.3 and 46.3 per cent, respectively have been noticed over Patna and Samastipur. The increasing trend of rainfall during aridhra and decreasing trend of rainfall during pushya nakshatra may provide an indication of shifting/moving of rainfall pattern early ie., shifting of maximum rainfall period from pushya to punarvasu/aridhra.

Verification of nakshatra based rainfall and rice-wheat

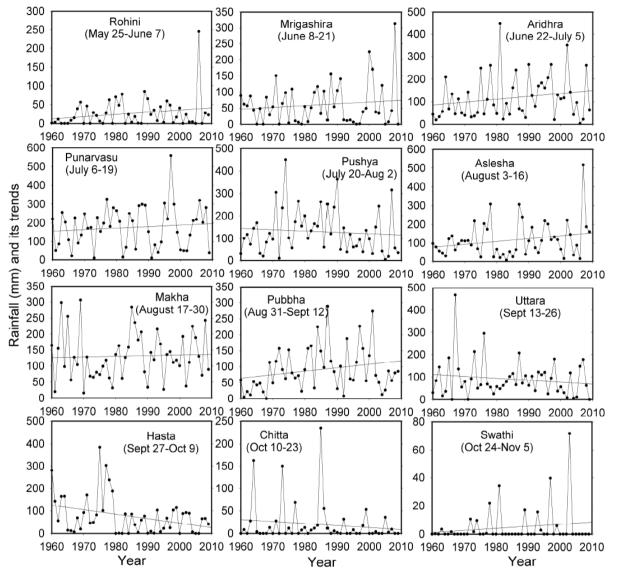


Fig 1: Rainfall variability and trends according to nakshatras at Patna district during 1960-2009

productivity variability

Relation between aridhra rainfall and rice productivity: Out of 30 negative rainfall anomaly years, 57 % of the years (17 years) rice productivity also decreased below technological trend at Patna. Interestingly, out of 25 deficit rainfall years with ≥ 20 % rainfall anomaly, 11 years rice productivity anomaly fall below 10 % of the technological trend. However, out of 19 deficit rainfall years with ≥ 50 % rainfall anomaly, 7 years rice productivity anomaly fall below 10 % of the technological trend. The correlation coefficient between rice yield anomaly and rainfall anomaly index during aridhra is very small (Table 3). As far as Samastipur is concerned, out of 9 negative rainfall anomaly years during aridhra, 6 years (67%) rice productivity fall below technological trend. This shows the percentage contribution of aridhra rainfall on rice productivity vary with the location also.

Relation between swathi rainfall and rice productivity: The mean rainfall of 4.8 and 7.2mm, respectively have been occurred during swathi nakshatra over Patna and Samastipur. At Patna, eleven years received rainfall ≥ 2.5 mm and only 3 years (1974, 1981 & 1997), the rice productivity fall below technological trend productivity (Table 4). Similarly, at Samastipur 5 years received rainfall e" 2.5mm and only 2 years (1989 & 2002), the rice productivity fall below technological trend productivity. It is also seen that rice productivity increased drastically from technological trend

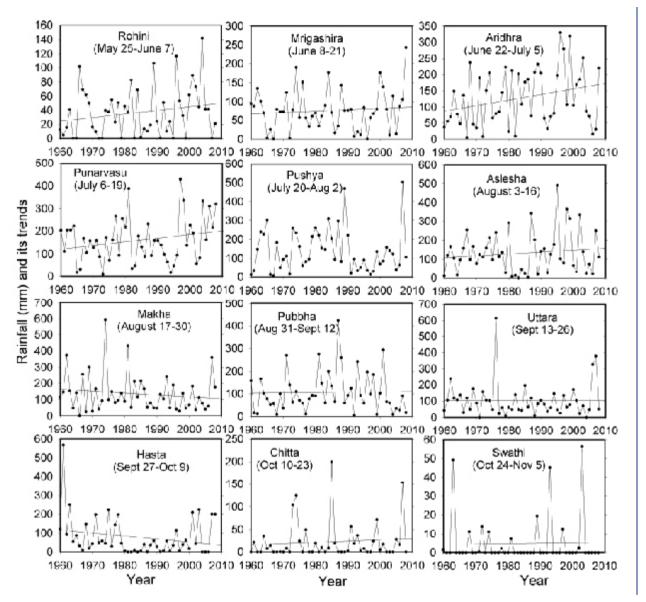


Fig 2: Rainfall variability and trends according to nakshatras at Samastipur district during 1960-2009

during the highest rainfall of 71.7 mm (about 29%) in 2003 at Patna. Similarly, at Samastipur also recorded highest (50.5%) positive rice productivity in 2003 with a highest rainfall of 56.5 mm. All these years, except 1978 and 2003, received only one rainy day during swathi nakshatra over Patna. In year 1997 and 2003, the rainfall distributed in 3 and 4 days respectively. Moreover, in year 1997, the rainfall received in two spells during the 14 day period, but 2003 it occurred in a single spell. This may be the reason for the negative productivity anomaly in 1997. Due to the occurrence of two different rain spells, the length of moist period may have increased and thereby spoiled the grains. But in Samastipur interestingly more rainy days (\geq 2) during swathi nakshatra

helped to achieve higher rice productivity. Correlation statistics also show that higher F-value and significant relation between higher rice productivity and swathi nakshatra rainfall for Samastipur district (Table 3).

Relation between rohini, mrigashira, aridhra nakshatra rainfall and rice productivity: Rains occurred in six years during rohini and break during mrigashira (8 June – 21 June) nakshatra and low rainfall during aridhra at Patna (Table 5). Out of these 6 years (1969, 1977, 1980, 1982, 1989 & 1992), 3 years the rice productivity falls below technological trend value. This means 50 % of the years this proverb holds well. Moreover, it is seen that in 1969 & 1992, the rice productivity

Table 3: F-Statistic and the Spearman Rank Correlation
Coefficient (r _s) between rainfall anomaly index
during nakshatra and rice/wheat productivity
anomaly index at Patna and Samastipur districts

Sl. Rainfall		Pat	na	Samastipur		
No.	anomaly	F-Stat	I.	F-Stat	I.	
	indices				_	
Rice						
1	Arifhra	0.580	0.11	0.776	021	
2	Swathi	1354	0.12	14.470 +++	0.68++	
3	Rohini	1.817	0.19	2.335	-035+	
4	Mrigashira	0.069	-0.04	0.229	-0.12	
Wheat						
5	Hasta	0.011	0.02	0.064	-0.06	

(* - 5 per cent level, **- 1 per cent level

+ - Significant at 0.05 level, ++- Significant at 0.01 level)

declined drastically. As far as Samastipur is concerned, this situation occurred in only in 1992 and rice productivity reduced considerably to -60.9 % of the technological trend productivity.

Relation between hasta nakshatra rainfall and wheat productivity: Out of 25 years received deficit rainfall during hasta nakshatra, 14 years i.e., 56% of the years the wheat productivity recorded negative anomaly at Patna. However at Samastipur, out of 13 years received deficit rainfall during hasta, 8 years i.e. 62 % of the years the wheat productivity recorded negative anomaly. Rainfall failed completely during hasta period in 4 years, out of these, two years wheat productivity fall below the technological trend at Patna while at Samastipur, out of 3 years, 2 years wheat yield recorded negatively. Moreover, the good rainfall during hasta nakshatra may be beneficial for proper uniform / higher germination as well as larger coverage of cultivation of wheat and also increase the ground water table, so that farmers can afford recommended number of irrigations. Thus this traditional knowledge explains more than 50 % of yield anomaly in rice and wheat, which is more than the scientific findings of rainfall and yield of rice (Subash et al. 2009) and therefore, combining scientific and traditional knowledge may be more appropriate for forecasting yield in advance.

ACKNOWLEDGEMENT

Authors are thankful to National Agricultural Innovation Project (NAIP) for providing necessary funds to taken up this study. The authors are also thankful to Joint Director, Agricultural Research Institute, Patna, Rajendra Agricultural University and Head, IARI Regional Station, Pusa for sharing

Year	Rice productivity	Rainfall
	anomaly index	anomaly
	(%)	index(%)
Patna		
1963	13.21	-29.2(1)
1972	18.18	120.8(1)
1974	-4.26	100.0(1)
1978	27.18	3583(1)
1981	-6.05	614.6(1)
1989	215	254.2(1)
1993	22.82	225.0(1)
1994	2.56	-41.7(1)
1997	-17.78	725.0(3)
1999	4.41	20.8(1)
2003	29.41	1393.8(4)
Samast	фи	
1989	-1.44	169.4(1)
1993	54.13	527.8(2)
1997	15.61	73.6(2)
2002	-9.04	-653(1)
2003	50.50	684.7(3)

 Table 4: Rice productivity anomaly index and rainfall anomaly index during swathi nakshatra in deficit vears at Patna and Samastipur districts

() parenthesis indicates number of rainy days

the meteorological data.

REFERENCES

- Gadgil, S. and Rao, P.R.S. (2000). Farming strategies for a variable climate – A challenge. *Current Sci.*, 78(10):1203-1215
- Golakia, B.A. (1992). Proverbs for predicting the moods of monsoon. *Honey Bee*, 3(1):12
- Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982) Techniques of trend analysis for monthly water quality data. *Water Resour. Res.*, 18(1), 107-121.
- India Meteorological Department. (1998). "Rashtriya Panchang".
- Kanani, P.R. (2006). Testing of Traditional methods of weather forecasting in Gujarat using the participatory approach. Traditional Knowledge Systems of India and Sri Lanka (Eds) Balasubramanian, A.V. and Nirmala Devi, T.D. Centre for Indian Knowledge Systems(CIKS), Chennai, 125-144.
- Kendall, M.G. (1975) "Rank correlation methods". Charles griffin, London.
- Mann, H.B. (1945) Non-parametric test against trend.

Year	Rainfall anor	Rice		
	Rohini	Mrigashira	Aridhra	productivity anomaly index (%)
Patna				
1969	112.1	-53.5	-58.2	-32.99
1977	3.4	-835	-6.8	15.61
1980	165.7	-11.1	-60.8	5.67
1982	193.6	- 17 5	-81.5	-1.20
1989	222.6	-12.4	-75.4	21.50
1992	32.8	-785	-32.9	-48.77
Samasti	ipur 🛛 👘			
1992	4.9	-903	-79.4	-60.90

Table 5: Relation between rohini, mrigashira, aridhra nakshatra rainfall anomaly index and rice productivity anomaly index

Econometrica, 13:245-259.

- Parthasarthy, B, Rupakumar, K and Munot, A.A. (1993). Homogenous Indian Monsoon Rainfall: Variability and prediction. *Indian Acad Sci, Earth Planetary Sciences*, 102:121 – 155.
- Parthasarthy, B, Munot, A.A and Kothawale, D.R. (1995a). All India monthly seasonal rainfall series ; 1871–1993. *Theor Appl Climatol*, 49:217–224.
- Parthasarathy, B, Munot, A.A and Kothawale, D.R. (1995b). Monthly and seasonal rainfall series for all-India homogeneous regions and meteorological subdivisions:1871-1994. Research Report No. RR-065, IITM, Pune, 113 pp.
- Sen, P.K. (1968) Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc., 63: 1379-1389

Subash, N. and Ram Mohan, H.S. (2010). Trend detection

in rainfall and evaluation of standardized precipitation index as a drought assessment index for rice-wheat productivity over IGR in India. *Int. J. Climatol.*, DOI:10.1002/joc.2188.

- Subash, N., Ram Mohan, H.S. and Sikka, A.K. (2009). Quantitative assessment of influence of monsoon rainfall variability on rice production over India. *J. Agromet.*, 11(2):109-116.
- Vaidya, V.B. (2004). Long range forecast of monsoon with Astronomy and local observations for Maharashtra. A short communication published in *Asian Agri-History*, 8(4):323-324
- Varshneya, M.C., Bhat, V.V. and Joshi, R.M. (2002). "Nakshatra-varsha almanac prepared for Maharashtra" pp.22.

Received: December 2010; Accepted: April 2011