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ABSTRACT

A study was conducted with a broad objective of developing and demonstrating a methodology for crop
growth monitoring and yield forecasting which can provide periodical crop growth assessment with spatial
information. The procedure was developed to generate grid-weather, link the point based simulation model WOFOST
(World Food Studies) to spatial inputs like crop, soil and weather and predict wheat yield at grid and administrative
scale. Two approaches were adopted to predict wheat yield; a) the regression approach, in which simulated
potential yields were regressed with final estimated yields by Directorate of Economics and Statistics (DES) for
each of the six major wheat growing states and b) forcing approach in which LAl for each grid (25km x 25km)
derived from remote sensing was forced into the simulation model to divert the simulation output and final grain yield
into right direction. The deviations between the estimated state yield and reported yield were more in case of the
forcing (0.7 — 25.4 %) as compared to regression approach (0.5 — 9.2 %). However, the spatial variability at grid
level was explained more in case of forcing approach. Results indicated that regression approach is suitable for
in season yield forecasting at state level and forcing approach is better for spatial crop condition assessment and

crop growth monitoring.

Key words: Wheat yield, crop simulation, WOFOST model, LAI, remote sensing

Accurate regional wheat yield assessment is very
important for national food security and decision-making.
Among various approaches of yield assessment, crop
modelling is the ultimate tool for yield prediction. For large
area yield modelling input data is required at spatial level, for
which ground observation is not sufficient and collection
through ground observation is very much time and labour
consuming. Remote sensing provides observationsover large
area at regular intervals, thus making it useful in large-scale
crop modelling (Moulin et al., 1998; Reynolds et al., 2000).
Use of satellite-based inputs highly simplifies the process
considering the amount of time and labour that regional level
data collection requires. Anumber of studies have been carried
out using remote sensing based regression models for
regional or countrywide predictions (Rasmussen, 1998;
Dabrawoska et al., 2002). Doraiswamy et al. (2005) used
remote sensing inputs in a crop model for regional yield
assessment and the findings indicate that with the selection
of an appropriate crop model and careful application of input
information derived from satellite-based observations,
regional crop yield assessments using remote sensing can
be highly beneficial. Dadhwal and Ray (2000) reported use
of such regression models for district level yield forecasting
in India. However, the regression-based models are highly
variable and do not consistently provide adequate accuracy
for larger areas since they are empirical in nature (Moulin et
al., 1998). The variables used in the regression models to
increase the accuracy (or the R-square) cannot be of global
application as such variables differ from region to region.

Other methods used by some researchers are based on
application of Montieth-based models that employ
Photosynthetically Active Radiation (PAR) and Absorbed
Photosynthetically Active Radiation (APAR) parameters to
estimate yield (Bastiaanssen and Ali, 2003). These methods
do not use meteorological inputs and are mostly based upon
the ability of plants to utilize the solar radiation for
photosynthesis. Therefore, these models are not appropriate
for and have not been adapted to all kind of regional
application, especially in rain-fed condition. Hence, most
suitable crop prediction models for regional application, which
may be adapted to incorporate information from remote-
sensing based observations, are mechanistic models that
relate physiological growth stage to environmental variables
to obtain the model output. Sehgal (2001) described the
modification of the WTGROWS for using RS data. The
WTGROWS model has been linked spatially as well as with
RS inputs on phenology for determining district-wise sowing
date from WIFS profiles and using it for spatial simulation of
wheat growth (Sehgal et al., 2002). Among mechanistic
models, some require very detailed field level information
that cannot be estimated for regional level modelling
purposes. In this context, the WOFOST (WOrld FOod
STudies) model (van Diepen et. al., 1989) holds promise, as
even though it is a mechanistic model the inputs required for
running the model are very simple. However as the model is
point based, its spatial application requires spatial database
generation (both agro-meteorological and biophysical) and
linking of the spatial database to the WOFOST application
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program. Assimilation of remote sensing data in crop model
can be done in two different ways. One is use of agro-
meteorological input parameter in the model directly and the
second is coupling of one of the state variable derived from
remote sensing in the model through forcing. Among different
state variables governing grain yield, LAl is the one of the
important variable explaining the ability of the crop to
intercept solar energy and in understanding the impact of
crop management practices and hence in regulating the grain
yield.

The present study was carried out with a broad
objective of developing and demonstrating a methodology
for crop growth monitoring and yield forecasting which can
provide periodical crop growth assessment with spatial
information. To develop the procedure to generate grid-
weather, link the point based simulation model WOFOST to
spatial inputs like crop, soil and weather and predict wheat
yield at grid and administrative scale. The evaluation of two
different approaches; the forcing approach (forcing of RS
derived LALI into the model) and the regression approach
(using historical yield) for spatial wheat yield forecasting.

METHODOLOGY
Study area

The study is confined to six major wheat-growing states
of India viz. Punjab, Haryana, Uttar Pradesh (UP), Bihar,
Rajasthan and Madhya Pradesh (MP). The six major states
cover about 86.5 percent area and 92 percent production of
wheat in India (Oza et al., 2006). The aerial extent is from 32°
15° N to 20°55” N latitude in north-south direction and from
69°30’ E to 88°15’ E longitude in east-west direction.

Preparation of data on GIS framework

For spatial scale implementation of WOFOST model,
the study area was divided into number of equal area grid
cells (25 km x 25 km size) inside which the soil, weather and
crop were assumed to be homogenous. Albers Conical Equal
Area projection was used for this purpose that preserves
the original shape of the country and maintains equal area of
the grids. Total number of grids falling under six wheat-
growing states were about 1430 grids. District and state
boundaries were overlaid over the grids to aggregate the
outputs at required administrative units.

Description of WOFOST Model

WOFOST calculates first the instantaneous
photosynthesis at three depths in the canopy for three times
in a day, which is subsequently integrated over the depth of
the canopy and over the light period, to arrive at daily total

[Vol. 12, No. 2

canopy photosynthesis. After subtracting maintenance
respiration, assimilates are partitioned into roots, stems,
leaves and grains as a function of the development stage,
which is calculated by integrating the daily development
rate, described as a function of temperature and photoperiod.
Assimilates are then converted into structural plant material
taking into account growth respiration. Aboveground dry
matter accumulation and its distribution over leaves, stems
and grains are simulated from sowing to maturity on the
basis of physiological processes as determined by the crop

response to daily weather.
Spatial weather data generation

The daily data viz. minimum and maximum temperature,
rainfall, dew point temperature, wind speed of 199 weather
stations of IMD were used for this purpose. Solar radiation
was estimated using Hargreaves formula (Hargreaves et al.,
1985) from maximum and minimum temperature and local
Hargreaves coefficients (Tripathy et al., 2008). The missing
values in the observed station data were replaced through
temporal and spatial interpolation using available
surrounding information. The daily and weekly climatic
normals were also considered for interpolation of missing
weather parameters like wind speed and early morning vapour
pressure. The station data were interpolated at 25 km grid
level using Thin Plate Spline (TPS) interpolation technique
(Hutchinson and Gessler, 1994). As the incorporation of a
continuous spatially varying elevation is a critical factor in
the accuracy of minimum and maximum temperature surfaces,
the values were adjusted with the elevation of a station and
median elevation of a grid to which temperature data are to
be interpolated. Grid-wise median elevation map was
generated using Shuttle Radar Terrain Mapper (SRTM) data
available at 1km x 1km raster image. A separate lapse rate for
minimum and maximum temperature was used for temperature
interpolation (Chaudhari et al., 2005, Tripathy et al., 2006) to
get the grid wise weather data. The example of resultant
interpolated temperature surfaces for maximum and minimum
temperatures of January 1, 2007 is shown in Fig. 1.

Soil Parameters: Texture, soil moisture constants, Hydraulic
conductivity at different suction, Saturated Hydraulic
conductivity, and percolation rate. FAO soil map (1:5,000,000)
was used and grid-wise soil files prepared using different
soil textural classes were integrated with the crop simulation
model - WOFOST.

Crop coefficients: crop phenology (Temperature sum
requirement from sowing to emergence, from emergence to
anthesis and from anthesis to maturity); crop morphology
(LAI at emergence, relative growth rate of LA, specific leaf
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Fig. 1: Interpolated temperatures using TPS method at 25 km grid size (Janl, 2007)

Table 1: Crop coefficients used in WOFOST model for yield simulation of different varieties in different states

Coefficients for different crop parameters

State Variety

TSuml TSum2 TSum3 RGRLAI EFFTB KDIFTB CVL CvO CVR CVvs

Bihar and UP HD2733 120 1188 1017

Haryana and PBW343 125 1181 810

Punjab
MP Malvasakti 117 947 770
Rajasthan Raj3765 95 809 614

0.0080 0.60 0.5 0.685 0.709 0.694  0.662

0.0060  0.60 0.5 0.685 0.679 0.694 0.625

0.0084  0.58 0.5 0.600 0.661 0.694 0.602
0.0082  0.55 0.5 0.720 0.709 0.694 0.662

TSUML1: Temperature sum from sowing to emergence [cel d]; TSUM2: temperature sum from emergence to anthesis [cel d]; TSUM3:
temperature sum from anthesis to maturity [cel d]; RGRLAI: maximum relative increase in LAI [ha ha? d']; KDIFTB: extinction coefficient
for diffuse visible light [-]; EFFTB: light-use efficiency single leaf [kg ha* hr? j* m? s]; CVL, CVO, CVR and CVS are efficiency of conversion into

leaves, storage org.; roots and into stems, respectively [kg kg*].

area); crop physiology (extinction coefficient, Light use
efficiency, conversion efficiency for leaf, stem, root and
storage organ, partitioning coefficients for root, stem, leaf
and storage organ)

Calibrated crop coefficient of one major wheat variety
for each of the six major states was used for yield prediction
of the respective state (Table 1).

Spatial implementation of model

The spatial implementation of point based WOFOST
model necessitated the linkage of the model with the crop,
soil and weather parameters of each grid to the WOFOST
model. An interface module was written in FORTRAN to link

grid-wise data for soil, crop and weather to WOFOST
executable module. The potential yield map was generated
from the output file using ENVI-IDL software.

Approaches of yield estimation

Two approaches were tried and compared for multi-
scale yield estimation using crop simulation. In one approach
the LAI derived from RS data was forced in the WOFOST
model and other approach is the regression approach based
on historical yield data. The details of both the approaches
are given below.

Forcing approach

In this approach, the value of state variable, here LAI,
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Table 2: Regression coefficients used for yield estimation of
six major wheat-growing states

State b0 bl b2 R?

Bihar -6.63 1.5E-04 3.9E-03 0.31
Haryana -39.03 9.0E-05 2.2E-02 0.51
MP -24.94 1.8E-04 1.3E-02 043
Punjab 5.03 1.7E-04 1.6E-02 0.53
Rajasthan  -97.92 2.5E-04 4.9E-02 0.64
UP -58.04 8.0E-05 3.0E-02  0.65

b0: intercept; bl: coefficient for simulated yield; b2: coefficient
for time trend; R?: coefficient of determination

at a given time step of growth simulation is corrected by its
observed value (from remote sensing data). As the corrected
value of the state variable determines the rate of growth of
the state variables at next time step, the model then steers on
a correct growth path and ultimately results in grain yield
closer to the actual value. Among different state variables
governing grain yield, LAI is most important in explaining
the ability of the crop to intercept solar energy and in
understanding the impact of crop management practices
(Chen and Cihlar, 1996). Hence, here the most important
biophysical parameter LAI estimated using an empirical
relationship between field observed LAI and NDVI
(Normalized Difference Vegetation Index) generated from
remote sensing at approximately peak vegetative growth
(Nigam et al., 2007) was forced to the crop simulation model
for predicting crop yield at spatial scale.

It was observed that by updating only one state
variable (here LAI), model behaviour became unpredictable.
It may be due to the fact that unless all model state variables
are updated on the day of observation, model may show
inconsistencies in simulation, as pointed by Maas (1988).
Hence, along with the LAI other related state variables like
periodical biomass of each plant part were also adjusted in
proportion to the adjustment made in LAI as calculated from
remote sensing data. A correction factor (CF) was calculated
as the ratio of this LAI to the model computed LAI for the
observed date.

For this approach, the WOFOST model was run at each
grid using grid-wise weather, soil, and crop data to generate
different output up to the date for which LAI from remote
sensing was derived. Then the simulated state variables (LA,
Specific leaf weight, stem weight, etc.) were corrected using
the CF to get the final yield at grid level. Aggregation was
done at state level based on the grid-wise crop fraction
obtained through RS data analysis (Anonymous, 2007).
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Fig. 2: Potential wheat yield (t ha') simulated by WOFOST
model for 2006-07

Regression approach

In the other approach, a combination of a linear time
trend and crop growth simulation results are used to account
for the trend in yield series and weather variability,
respectively. It can be described as:

Where, v, and S_ are estimated yield and simulated yield
or predictors (t/ha), respectively in year T, and b, b, and b,
are regression constants.

The regression coefficients for each state were derived
using the DES reported yield for last 10 years (1995-2004)
and simulated yield for that period. The simulated grain yield
of the current season was used as predictor for current season
yield prediction. The coefficients are given in Table 2.

Comparison of two approaches

Both the approaches were compared for the applicability
of in-season multiple forecasting as well as the capability in
capturing spatial yield variation. For assessing the accuracy
of yield estimation, the yield reported by DES at state level
was used and the absolute deviation from the reported yield
was calculated.

RESULTSAND DISCUSSION
Potential yield

Potential yield indicated the effect of weather
parameters on yield. Wheat yield is mainly affected by
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Fig. 3: Wheat yield (t ha) estimated by a. forcing approach and b. regression approach

Table 3: Absolute deviation (t ha') of estimated yield from DES reported yield

State Reported yield Estimated yield (t ha™) Absolute deviation (t ha™)
-1
(tha”) Forcing approach ~ Regression approach ~ Forcing approach  Regression approach
Punjab 4.42 4.39 4.13 0.03 0.29
Haryana 3.85 3.71 3.83 0.14 0.02
UpP 2.78 3.50 2.58 0.72 0.20
Bihar 1.87 1.53 2.02 0.34 0.15
Rajasthan 2.29 2.56 2.50 0.27 0.21
MP 1.52 2.90 1.54 1.38 0.02

temperature (both minimum and maximum) and solar radiation.
As expected, potential yield increased at high latitude where
low temperature prevails compared to low latitude where high
temperature prevails. The states like Punjab, Haryana and
Northern Uttar Pradesh show higher yield. Lowest yield was
simulated in Madhya Pradesh state (Fig. 2). It varied from
1.80t ha* in the southern part of MP and Rajasthanto 7.30 t
ha* in northern parts of Punjab.

Simulated yield through forcing approach

For all grids wheat yield was estimated using three
dates of sowing (normal, one week before and one week
after the normal). The weighted average of the yield of one
grid for these three dates (50 % of normal date, 25 % of the
pre-normal date and 25% of the post normal date) was taken
as actual yield of that grid. Grid-wise yield map for the six
states is given in Fig. 3a. The state level average yield varied
from 1.53 t ha! in Bihar to 4.39 t ha! in Punjab. Grid-wise
variation in yield was more in this approach as compared to

regression approach (Fig. 3a). In Punjab, the yield varied
from 1.0 t ha' to 6.78 t ha* with state average of 4.39 t ha™.
Same pattern of variability was also observed in other states
also. The estimated yield using this approach was closer to
the reported yield for the states like Punjab and Haryana
(Table 3). However, the model over estimated the yield in the
states of MP and UP while under estimated for Bihar.

First, for this approach, the LAI estimated using RS
data is the main driving force to convert potential to actual
simulated yield, there for any error in LAI estimation leads to
errors in simulated yield. Here, LAI estimated at grid level
using empirical equations developed at state level, was used
to enforce the model output to right direction. The LAl
estimation itself is a topic of wide discussion and many issues
involved beginning from the approach of estimation to up-
scaling from field to satellite resolution and again to grid
level aggregation. Second, the normal dates of sowing
collected through literature and survey shows the wide range
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from region to region and grid to grid even within the grid.
The coefficients used for single variety and single date as
appropriate with fixed weightages for prior and after dates
are not sufficient for the states having vast area and diversity
like UP, MP and Bihar that led to yield anomaly in these
states (Table 3). Any error in either of two or in both leads to
wrong CF computation and finally to grain yield. Other
possible sources of error may be error in estimation of solar
radiation and error in interpolation of weather data. The
approach has good strength to predict yield at grid level
provided with grid level date of sowing using periodical RS
data, better LAI estimation using radiation transfer models
and daily insolation estimated from satellite data.

Simulated yield through regression approach

The final yield of each grid falling in a state was
estimated using the model for that state and spatial yield
map was generated for all the six states (Fig. 3b). The yield in
Punjab varied from 3.87 t ha' to 4.22 t ha'’. The state average
was 0.29-t hamore than that reported by DES (Table 3). In
Haryana the yield varied from 3.75 to 3.95 t ha! with a state
average of 3.83tha! (0.02 t ha more). In MP, it varied from
1.55t0 1.77 t ha with the state average of 1.54 t ha (absolute
deviation of 0.02 t ha* from reported yield). For UP state
average was 0.20 t ha! less than that of the reported yield
with yield varied from 2.30 to 2.76 t ha. In Bihar the spatial
variability was very less (2.00 to 2.04 t ha) with a state
average of 2.02 t ha! that is 0.20 t ha! more than that of
reported yield (Table 3). For six major wheat-growing states
the yield varied from 1.46 tha to 4.22 t ha* (Fig. 3b).

Comparison of two approaches

Both approaches were compared on the basis of their
capability to forecast yield at different crop growth stages,
to capture the spatial variability and the level of accuracy as
compared to reported yield. As the forcing approach requires
peak LAI value for better prediction, forecasting at early
growth stage is difficult with this approach. The results
indicated that the absolute deviation between the estimated
state yield and the reported yield was more in case of the
forcing than that with the regression except for Punjab (Table
3). Hence, regression approach is suitable for yield forecasting
for in season crop yield forecasting at state level. The spatial
variability at grid level was more in case of forcing approach
as compared to the regression approach (Fig. 3). This is
because the historical yield was available only at district or
state level and not per grid, hence the same prediction
equation was used for all grids of a particular state to estimate
grid level yield while in the forcing approach LAI values
were derived for each grid and used to estimate the final
yield. Hence, for spatial crop growth monitoring forcing
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approach can be used.
CONCLUSIONS

The study demonstrated the methodology for in-
season crop yield forecasting at spatial scale with the use of
dynamic simulation model-WOFOST and RS derived crop
parameters like crop fraction, LAI etc. It was found that the
regression approach would be more suitable for within season
yield forecasting at district or state level while the forcing
approach can be applied for finding out the spatial variability
of yield using LAl derived from RS data. However, use of RS
derived LAl improved the spatial yield estimation, and hence,
can be used successfully for relative crop condition
monitoring. There is need to calibrate major 2-3 varieties per
state to represent the vast variability in states like UP, MP,
Bihar and Rajasthan. The study suggests future research for
improving the LAI estimation at grid level which can improve
the accuracy of regional yield prediction using LAI forcing
with more spatial variability. The approach has good strength
to predict yield in future with grid level date of sowing using
periodical RS data, better LAI estimation using radiation
transfer models and daily insolation estimated from satellite
data. This study suggests use of weather data from remote
sensing and automatic weather stations for more accurate
regional yield prediction, which can provide real data at
different spatial level and hence can reduce the error relating
to interpolation.
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