Effect of diurnal variation of atmospheric and elevated levels of carbon-di-oxide and photosynthetically active radiation on intercellular concentration and rate of photosynthesis in maize and safflower

M.RAJAVEL, R.P.SAMUI, L.S.RATHORE, R.BALASUBRAMANIAN, K.GHOSH and N.CHAT TO PADHYAY Agricultural Meteorology Division, India Meteorological Department, Pure-5

E-mail: m_rajmet@yahoo.co.in

ABSTRACT

A field experiment was conducted during rabi 2003 to study the effect of elevated levels of O_2 and PAR on intercellular O_2 concentration (C₁), net photosynthetic rate and their interrelationship in maize and safflower at different growth stages. The highest concentration of intercellular O_2 was recorded at 1200 and 1400 hrs and lowest concentration of intercellular O_2 was found during early hours in the morning (O8 00 hours) irrespective of levels of O_2 and PAR at all the stages of maize and sunflower. The higher rate of net photosynthetic rate was observed in active vegetative stage (11.7 to 49.1 µmol O_2 cm² sec⁴) compared to knee high and flowering stages of maize and during late vegetative stage (21.6 to 47.2 µmol O_2 cm² sec⁴) in safflower compared to early vegetative and flowering stage. The optimum levels of O_2 mol PAR for maize were 650µmol O_2 mol⁴ and 960 µmol m² s⁴ respectively. A combination of 650 µmol CO_2 mol⁴ and 960 µmol m² s⁴ of PAR for maize and 650 µmol O_2 mol⁴ and 1100 µmol m² s⁴ of PAR for safflower were found optimum levels. A positive correlation between the intercellular O_2 concentration and net photosynthetic rate in maize and safflower was found throughout the crop growth period.

Key words: 00, PAR, intercellular 00, concentration, net photosynthetic rate

Green plants need CO_2 to grow and a higher concentration of atmospheric CO_2 will stimulate the photosynthetic process, promoting plant growth and agricultural productivity without increasing the water demand for crop transpiration (Goudriaan and Unsworth, 1980). On the other hand, expected climatic warming may have adverse effects on agriculture, partly off setting the positive direct CO_2 effects. Models predict that the global temperature will rise by about 1–3.5°C by the year 2100.

In general, the change in crop yields depends not only on the change in rainfall but also change in OO_2 concentration, PAR and temperature. While increase in the rainfall and concentration of OO_2 , generally lead to an increase in yield, the impact of an increase in temperature is generally negative in tropics. Thus, it is necessary to ascertain whether the impact of increased rainfall and OO_2 will overcome the impact of increased temperature.

Plant shoot responses to elevated O_2 are well documented. Previous work has shown that high O_2 often changes plant water use efficiency, net photosynthesis, biomass production and yield (Carlson and Bazzaz, 1980; Rogers and Dahlman, 1993; Amthor, 1995). In general, under elevated O_2 , whole plant nutrient uptake and nutrient utilization efficiency decline (Rogers et al., 1994, 1997). When other environmental resources are present in adequate levels, C O_2 can enhance photosynthesis of C_3 plant over a wide range of concentrations.

Several studies have been made in glasshouses, control environmental chambers and open fields on the short and long term effects of elevated atmospheric O_2 concentration (Ca) on native and cultivated plants species (Devakumar and Jacob, 1997; Drake etal., 1997; Jacob etal., 2001; Long et al., 2004; Norby etal., 1999). Leaf photosynthetic rate directly responds to changes in intercellular O_2 concentration (C₄) (Jacob etal., 1995). In general, C₃ plant shows more response than C₄ and CAM plants.

Studies on relationship between light intensity and photosynthetic rate in rose plant suggests that 1200-2000 foot candles light intensity was a light saturation range for most plants and OO_2 saturation range for most plants is 500-1000 ppm while the ambient OO_2 level being 350 ppm in the atmosphere. The leaves of shaded tomato plants show a higher stomatal conductance and higher intercellular OO_2 concentration (Xianzhaoliu et al., 2002). Therefore, the present study was conducted with the objective to quantify the effect of diurnal variation of atmospheric and elevated levels of Carbon-di-oxide (OO_2) and Photosynthetically Active Radiation (PAR) on intercellular OO_2 concentration and rate of photosynthesis in C_4 (maize cv. Panchaganga) and C_3 (saf flower cv. Phule kusuma) crops.

M ATERIALS AND METHODS

The experiment was conducted at College of Agriculture, Pune during rabi 2003 season in maize cv.

Panchganga (a C, crop) and safflower cv. Phule Kusuma (a C, crop). Net photosynthetic rate (A), atmospheric (O), concentration, intercellular CO, (C,) concentration, photosynthetically active radiation were measured using portable photosynthesis system-an open system (LI- 6400, LI-COR, Lincoln) at two hourly intervals viz. 0800, 1000, 1200, 1400, 1600 hours IST. The measurements were taken at different levels of CO, concentrations (atmospheric level, 550, 650 $\mu mol~{\rm CO}_{\rm p}~{\rm mol}^{-1}$) and PAR (atmospheric, 800, 1100 μ mol m⁻² s⁻¹). The observations were taken after the instruments had been configured and calibrated. The analyzer pump and fans were turned on and CO, and relative humidity channels are put in the display. The chamber was clamped on a leaf similar to those to be measured. Until the relative humidity is steady at ambient value, the flow is adjusted and the chamber was clamped on to the third fully opened leaf from the tip. After waiting for an appropriate interval, log button was pressed on the console; when a steady CO, draw down is observed.

In order to supply elevated levels of CO_2 in side the leaf chamber, OO_2 cartridges (12 g) filled with OO_2 fitted to the CO, tank, encompasses injector system (6400-01) which consists of an electronic controller . Using CO_2 injector system a constant CO, input viz. 550/650 µmol CO, mol⁻¹ was passed to the leaf chamber. The CO₂ is controlled by delivering a precisely controlled pure 00, stream into air that is 00, free. Four minutes was allowed for CO, mixing. The 6400-02 IED light source which is totally integrated with the hardware and software of the LI-6400 system was used to supply different levels of PAR. The LED light source is installed by replacing the upper half of the standard LI-6400 leaf chamber, which are used for making measurements at atmosphere PAR. When using the standard leaf chamber, PAR is measured in the chamber near the leaf plane using the miniature gallium arsenide phosphide (GaAsP) sensor. The external ambient Photosynthetically Active Radiation was measured with an optional LICOR quantum sensor located outside the chamber. Incoming air was not scrubbed for water vapour. Before making each measurement, Infra Red Gas Analysers (IRGAs) were matched.

RESULTS AND DISCUSSION

Diumal variation of intercellular O_2 concentration (C_i)

Two hourly variations of intercellular O_2 concentration of maize and sunflower are presented in the Figs. 1 & 3. Increased supply of O_2 and light improved the O_2 concentration in inter cellular spaces of leaf cells at all the three stages of maize growth. The highest intercellular O_2 concentration (220.66 µmol O_2 mol⁴) was recorded at 1400 hs. After 1400 hrs, intercellular O_2 concentration started declining. The lowest CO, concentration was observed at 0800 hrs. Increasing external CO, supply caused increase in CO, concentration and higher CO, concentration (215.55 µmol CO, mol⁻¹) as observed in 550 µmol CO, mol⁻¹ compared to 650 µmol CO, mol⁻¹ and atmospheric CO, Additional supply of light compared to natural level has given increased 00, concentration in the intercellular spaces differentially in a day. At the beginning of the day (0800 hrs) when the natural PAR were 1060.5, 159.7 and 196.2 µmol m² s¹, during kneehigh, active vegetative and flowering stages respectively, increased levels of light viz., 800 and 1100 μ mols m² s⁴ had increased CO2 concentration. But as the day progresses, even with natural supply of light higher intercellular CO. concentration was observed at all the growth stages. 1100 umol m² s¹ level of light had resulted in higher intercellular CO_{c} concentration of 170.4 µmol CO_{c} mol⁻¹ and 162.31 µmol CO, mol⁻¹ during knee-high and flowering stages compared to 800 μ mol m²s⁻¹. The optimum level of ∞_{2} for maize was 550 μ mol CO2 mol⁻¹ and PAR was 960 μ mol m⁻²s⁻¹ and a combination of 650 μ mol CO $_2$ mol⁻¹ and 960 μ mol m⁻²s⁻¹ of PAR is found to be optimum.

Similar effect of elevated CO, levels has also seen in intercellular 00, concentration in safflower. The highest intercellular O_{2} concentration (232.04 µmol O_{2} mol⁻¹) was recorded at 1400 hrs., thereafter intercellular CO concentration started declining as in maize. The lowest CO, concentration (208.47 μ mol CO₂ mol⁻¹) was observed at 0800 hrs compared to 1000 to 1600 hrs. Increased CO, supply of 650 µmol CO, mol⁴ recorded higher intercellular CO, concentration (234.75 µmol CO² mol⁻¹) compared to atmospheric CO, and 550 µmol CO, mol⁴. Though supply of light favours increased intercellular CO, concentration at 0800 hrs., it failed to improve the intercellular (O2 concentration beyond 0800 hrs. due to the higher natural PAR as the day progresses. The intercellular CO, concentration at 0800 hrs. was lower at all the growth stages of safflower compared to 1000 to 1600 hrs. The optimum level of CO, for safflower was 650 $\mu mol~CO_{_2}~mol^{-1}$ and PAR was 1100 $\mu mol~m^{-2}~s^{-1}$ and a combination of 650 μ mol CO, mol⁴ and 1100 μ mol m² s⁴ of PAR is found to be optimum.

Diurnal variation of net photosynthetic rate at different levels of $\rm CO_2$ and PAR

The effects of elevated levels of O_2 and PAR on net photosynthetic rate of maize and safflower are depicted in Figs. 2 & 4. The elevated levels of O_2 supply and PAR enhanced the net photosynthetic rate of maize. The net photosynthetic rate was higher (33.89 µmol O_2 cm² sec⁴) in 650 µmol O_2 mol⁴ compared to atmospheric O_2 and 550 µmol O_2 mol⁴. Ziska et al. (1999) also found increased photosynthetic carbon fixation in C₄ species as the

Fig.1: Effect of elevated levels of O_2 and PAR on intercellular O_2 concentration (µmol O_2 mol⁻¹) in maize

Fig.2: Mean net photosynthetic rate (µmol $O_2 \text{ cm}^2 \text{ sec}^-$) as influenced by O_2 and PAR in maize

atmospheric CO, concentration rises, under moderate to high light regimes. Increasing the supply of PAR from 800 and 1100 μ mol m⁻² s⁻¹ has increased the net photosynthetic rate with variable of focts in a day .At the beginning of the day at 0800 hrs increased levels of PAR viz., 800 and 1100 µmol m-² s⁻¹ has increased net photosynthetic rate at flowering stage only but at knee-high and active vegetative stage, natural supply of PAR itself recorded highest net photosynthetic rate. As the day progresses, even with natural supply of PAR higher rate of net photosynthetic rate was observed. External supply of 1100 µmol m² s¹ level of light has recorded higher net photosynthetic rate compared to 800 μ mol m⁻² s⁻¹. Assimilation of CO, depends on the photo flux incident upon the canopy and its absorption by leaves in different layers and on the efficiency of conversion of assimilate (Lawlor, 2001).

The higher rate of net photosynthetic rate was observed in knee-high stage of maize compared to active vegetative and flowering stages. The lower photosynthetic rate during later stages of crop growth is due to ageing of leaf and decline in photosynthetic efficiency. Similar relationship between rate of leaf area development and rate of photosynthetic rate was reported earlier by Muramoto et al. (1988).

Similar effect in safflower also noticed due to elevated levels of O_2 and light. Supply of 650 µmol O_2 mol⁻¹ have recorded highest net photosynthetic rate than atmospheric and 550 µmol CO, mol⁴. In the morning at 0800 hrs, increased levels of PAR viz., 800 and 1100 imol m⁻² s⁻¹ have increased the net photosynthetic rate of safflower even at late vegetative (32.9 and 36.7 $\mu mol~ \rm CO_{_2}~ cm^2~ sec^{-1}$ respectively at 800 and 1100 µmol m⁻² s⁻¹ and flowering stages (30.0 and 34.3 μ mol CO, cm² sec⁻¹ respectively at 800 and 1100 μ mol m² s¹. However, as the day progresses, net photosynthetic rate of saf flower at elevated levels of PAR is lesser than atmospheric PAR. The highest rate of net photosynthetic rate is observed during early vegetative stage and beyond which photosynthetic rate declines. At all the stages, net photosynthetic rate was highest between 1000 to 1400 hrs. irrespective of the growth stages.

Effect of elevated levels of C_{2} and PAR on ratio of C_{1}/C_{2}

Increased supply of O_2 (550 and 650 µmol O_2 mol⁴) and PAR (800 and 1100 imol m² s⁴) enhanced the ratio of C₁/C_a was observed with increased of maize. Increased ratio of C₁/C_a was observed with increased O₂ concentration of 550 µmol O₂ mol⁴ (0.55) and 650 µmol O₂ mol⁴ (0.57) compared to atmospheric O₂. The highest ratio of C₁/C_a was noticed at 1200 hrs (0.60) and 1400 hrs (0.60) in maize and thereafter the ratio was declined. The ratio of C₁/C_a was lowest (0.38) at 0800 hrs. Additional supply of PAR compared to natural PA R has given increased ratio of C_{1}/C_{1} in early hours (0.54) at 0800hrs in the morning at flowering stage. The ratio of C./C. was higher with atmospheric PAR at knee- high (0.59) and active vegetative (0.54) stages indicating the sufficiency of natural PAR. At 1000, 1200 and 1400 hrs, the ratio of C./C. was highest in atmospheric PAR in comparison with 800 and 1100 mol $m^2 s^1$. Similar response is noticed in safflower also. Increased CO, concentration of 650 µmol CO, mol⁻¹ have resulted in increased ratio of C_1/C_2 (0.62) compared to atmospheric O_2 and 550 µmol O_2 mol⁴. The ratio of C_1/C_2 was lowest at 0800 hrs. at all the growth stages of safflower . The highest ratio of C_{i}/C_{j} was noticed at 1400 hrs. (0.63), therafter, ratio of C,/C, started declining. Additional supply of PAR compared to natural PAR has given increased ratio of C,/C early hours (0800hrs) in the morning at late vegetative (0.52) and flowering (0.53) stage. While at early vegetative stages ratio of $C_{,}/C_{_{\rm o}}$ (0.59) was higher in atmospheric PAR. At 1000, 1200 and 1400 hrs, the ratio of C,/ C was highest in atmospheric PAR in comparison with 800 and 1100 mol m⁻² s¹. The conductance of the leaf surface and the rate of photosynthesis determine the concentration of CO, in the intercellular spaces. O, concentration at cell surface is the effective supply of O, which the assimilating cells experience within the leaf. The CO, concentration of the intercellular spaces depends on the geometry of the mesophyll air spaces (Lawlor, 2001).

Inter relationship between net photosynthetic rate and intercellular (0, concentration

The flux of CO, from the cell surface to Rubisco, consists of a series of 'resistances' in the liquid phases of the cell wall, cell membrane, cystol, chloroplast membranes and stoma to the enzyme active site. The rate of CO assimilation is not a linear function of C, or of the activity of Rubisco, but reaches a plateau at higher rate of the net photosynthesis, which may be explained by a 'draw- down' of CO, at the active site at high photosynthesis, even if C, is large (Lawlor, 2001). If leaf conductance to the flux of the CO, is some 30% below that of the intercellular space under normal atmospheric conditions (Van caemmerer and Evans, 1991). The carboxylation efficiency (imol CO, assimilation $m^{-2} s^{-1} Pa^{-1}$) may be calculated from the slope of the relation between A and C, when A is zero. Carboxylative of ficiency is related to metabolism, with C, plants having smaller efficiency than C, plants, and it depends on the amount of Rubisco in the tissue, for example nitrogen deficiency decreases both Rubisco amount and activity also efficiency in C_3 and C_4 plants. In the present experiment, a significant positive correlation exists between the intercellular 00, concentration and net photosynthetic rate. The linear relationship observed is furnished in Table 1.

Table 1: Correlation coefficient, regression equation for intercellular CO-, concentration (C.) and net photosynthetic rate (A)

*Significant at 1% level

CONCLUSION

- Atmospheric PAR supply of 960 µmol m² s⁴ recorded highest intercellular O₂ concentration in maize (205.44 µmol CO₂ mol⁴) and external supply of 1100 µmol m² s⁻¹ level of PAR recorded highest intercellular OO₂ concentration in safflower (228.45 µmol OO₂ mol⁴)
- (ii) External supply of 550 µmol Ω_2 mol⁻¹ has resulted in highest intercellular Ω_2 concentration in maize (215.55 µmol Ω_2 mol⁻¹) and 650 µmol Ω_2 mol⁻¹ has resulted in highest intercellular Ω_2 concentration (234.75 µmol Ω_2 mol⁻¹) in saf flower.
- (b) The optimum level of O_2 for higher net photosynthesis of maize was 650 µmol O_2 mol⁴ and PAR was 960 µmol m² s⁴ and for saf flower was 650 µmol O_2 mol⁴, PAR of 1100 µmol m² s⁴. A combination of 650µmol O_2 mol⁴ and 960 µmol m² s⁴ of PAR for maize and 650 µmol O_2 mol⁴ and 1100 µmol m² s⁴ of PAR were found to be optimum levels.
- (*) Increased supply of 650 $\mu mol~{\rm CO}_2~{\rm mol}^4$ enhanced the ratio of C $_{\rm i}$ /C $_{\rm a}$ at all the stages of maize (0.57) and sunflower (0.62).
- (i) Intercellular O_2 concentration and net photosynthetic rate is positively and significantly correlated.
- (ii) The results of the study would help to utilize natural resources and also to tackle problem related to global

** Significant at 5% level

warming under increased green house gases.

ACKNOWLEDGEMENT

The authors express their sincere thanks to AVM (Dr). Ajit Tyagi, Director General of Meteorology, IMD for according permission to publish the paper in the journal of Agrometeorology.

Crop	Stage of Rthe Earspices	r	Regress
Maize Amthoi i	Knee-high r, J.S., (1990). Terrestrial higher-pl ncreasing atmospheric CO ₂ in relation Active vegetative arbon cycle. Glob. Change Biol. 1: 24	lant (1;955 °nse to on to the global 13-74).89 **	A= 0.3 $R^{2} = 0.9$ A= 0.3 $R^{2} = 0.7$
Carlson Cafflowe E S Y Devak	n, R.W., Flowering, F.A., (1980). The ef Concentration on growth, phy- tanspiration and value use efficiency hvironment and Climatic Impact of Cos- singh, J. and Degrak, A. (eds). Academ Cork. pp. 609-12. Flowering umar. A.S. and Jacob, J. (1997)	fecto synthesis, of 01995s. In: al Utilization, nic Dr965, New 0.90**	$A=0.15 \\ R^{2}=0.7 \\ A=0.62 \\ R2=0. \\ A=0.3 \\ R^{2}=0.9 \\ A=0.29 \\ R^{2}=0.8 \\ R^{2}=0.8$

Development of plants in a CO₂ enriched World. Agro's Ann.Rev.Pl. Physiol ., pp. 281–317.

- Drake, B.G. and Gonzalex Meler, M.A., (1997). More efficient plats: A consequence of rising atmospheric O_2 Ann. Rev. Plant Physiol. Plant Mol. Biol., 48: 609–39.
- Goudriaan, J. and Unsworth, M.H., (1990). Implications of increasing carbon dioxide and climate change for agricultural productivity and water resources. In: Impact of carbon dioxide, trace gases and climate change on gldbal agriculture. American Society of Agronomy (ASA), Madison, WI, USA, Special publication No.53, pp. 111-130

- Jacob, J., Devakumar, A.S. and Drake, B.G., (2001).Global climate change and productivity. In: Tropical Forestry Research: Challenges in the millennium.
- Vanna, R.V., Brat, K.V., Muralicharan, E.M. and Shanna, J.K. (Eds.), Proceedings of the International Symposium, August 2-4, 2000. Peechi. India, pp.131-136.
- Jacob J., Grieter, C. and Drake, B.G., (1995). Acclimation of photosynthesis in relation to Rubisco and nonstructural carbohydrate contents and in situ carboxylase activity in Scirpus olnei grown at elevated C O₂ in the field. Plant. Cell Environ., 18: 875-884.
- Kozaki, A. and Takeba, G. (1996). Photorespiration protects $\rm C_{_3}$ plant from photoexidation. Nature , 384: 557–560.
- Lawlor, D.W., (2001). Carbon dioxide supply for photosynthesis. In: Photosynthesis, Viva Books Pvt. Itd. pp.386.
- Long, S.P., Anisworth, E.A., Rogers, A. and Ort, D.R., (2004). Rising atmospheric carbon dioxide: Plant face the fiture. Annu.Rev. Plant Biol., 55: 591-628.
- Muramoto, H., Hasketk, J., and El- Sharkawy, M., (1988). Relationship among rate of leaf area development, photosynthetic rate and rate of dry matter production among american cultivated cotton and other species. Crop Sci., 28: 163-166.
- Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W. and Cenlemans, R., (1999). Tree responses to

rising O_2 in field experiments: Implications for the future forest. Plant Cell Environ., 22: 683-714.

- Rogers, H.H. and Dahlman, R.C., (1993). Crop responses to C O₂ enrichment. Vegetation, 104/105:117-31.
- Rogers, H.H., Runion, G.B. and Krupa, S.V., (1994). Plant responses to atmospheric CO_2 enrichment with emphasis on root and rhizosphere. Environ. Pollution, 83:155-89.
- Rogers, H.H., Runion, G.B., Prior, S.A. and Tobert, H.A., (1997). Responses of plant to elevated atmospheric CO₂: Root growth, mineral nutrition and soil carbon. In: Carbon dioxide and environmental stress, Seemann, J.R., Ino, V and Moony, H.A., (eds.), San Diego, CA, Academic Press.
- Von caenmerer, S. and Evans, J.R., (1991). Determination of the average partial pressure of O_2 in chloroplasts from leaves of several C₃ plarts. Aust. J. Plant Physiol., 18: 287–305.
- Xianzhaoliu, Shaozhong Kang and Jianhua Zhang(2002). Yield and photosynthetic responses of tomato (Lycopersicon esulentum) to shading at different growth stages. Indian J. Agrl. Sci., 72(2):106-108
- Ziska, L.H., Sicher, R.C. and Bunce, J.A., (1999). The impact of elevated CO2 on the and gas exchange of three C4 species differing CO2 leak rates. Physiologia Plantarum, 105: 74 - 80.

Received: September 2009; Accepted: November 2009